Encapsulating Pt Nanoparticles through Transforming Fe3O4 into MIL-100(Fe) for Well-Defined Fe3O4@Pt@MIL-100(Fe) Core-Shell Heterostructures with Promoting Catalytic Activity.
Inorg Chem
; 58(18): 12433-12440, 2019 Sep 16.
Article
em En
| MEDLINE
| ID: mdl-31522504
Metal-organic framework (MOF)-based magnetic Pt catalyst Fe3O4@Pt@MIL-100(Fe) core-shell heterostructures were prepared through transforming Fe3O4 into MIL-100(Fe) in benzene-1,3,5-tricarboxylic acid solution along with encapsulating the Pt nanoparticles successively adsorbed onto the surface of the Fe3O4 nanosphere and the continuously forming surfaces of the growing MIL-100(Fe) crystals. This method circumvented the obstacles, controlling the formation of metal nanoparticles (MNPs) inside MOFs or regulating growth of MOFs around the MNPs, for preparing an MNP-MOF composite catalyst. The obtained well-defined Fe3O4@Pt@MIL-100(Fe) core-shell heterostructure was shown promoting catalytic activity on the reduction of 4-nitrophenol due to the synergistic effect between the Pt nanoparticles and the MIL-100(Fe) shell and recycling convenience due to the rapid separation of the Fe3O4 core under an external magnetic field.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article