Your browser doesn't support javascript.
loading
Targeting Histone Chaperone FACT Complex Overcomes 5-Fluorouracil Resistance in Colon Cancer.
Song, Heyu; Zeng, Jiping; Roychoudhury, Shrabasti; Biswas, Pranjal; Mohapatra, Bhopal; Ray, Sutapa; Dowlatshahi, Kayvon; Wang, Jing; Band, Vimla; Talmon, Geoffrey; Bhakat, Kishor K.
Afiliação
  • Song H; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
  • Zeng J; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
  • Roychoudhury S; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
  • Biswas P; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
  • Mohapatra B; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
  • Ray S; Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska.
  • Dowlatshahi K; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
  • Wang J; Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska.
  • Band V; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
  • Talmon G; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
  • Bhakat KK; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
Mol Cancer Ther ; 19(1): 258-269, 2020 01.
Article em En | MEDLINE | ID: mdl-31575655
ABSTRACT
Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway. Downregulation of APE1, a key enzyme in the BER pathway, decreases IC50 of 5-FU in dMMR colorectal cancer cells by 10-fold. Furthermore, we discover that the facilitates chromatin transcription (FACT) complex facilitates 5-FU repair in DNA via promoting the recruitment and acetylation of APE1 (AcAPE1) to damage sites in chromatin. Downregulation of FACT affects 5-FU damage repair in DNA and sensitizes dMMR colorectal cancer cells to 5-FU. Targeting the FACT complex with curaxins, a class of small molecules, significantly improves the 5-FU efficacy in dMMR colorectal cancer in vitro (∼50-fold decrease in IC50) and in vivo xenograft models. We show that primary tumor tissues of colorectal cancer patients have higher FACT and AcAPE1 levels compared with adjacent nontumor tissues. Additionally, there is a strong clinical correlation of FACT and AcAPE1 levels with colorectal cancer patients' response to chemotherapy. Together, our study demonstrates that targeting FACT with curaxins is a promising strategy to overcome 5-FU resistance in dMMR colorectal cancer patients.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carbazóis / Proteínas de Grupo de Alta Mobilidade / Protocolos de Quimioterapia Combinada Antineoplásica / Neoplasias do Colo / Fatores de Elongação da Transcrição / Proteínas de Ligação a DNA / Fluoruracila Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carbazóis / Proteínas de Grupo de Alta Mobilidade / Protocolos de Quimioterapia Combinada Antineoplásica / Neoplasias do Colo / Fatores de Elongação da Transcrição / Proteínas de Ligação a DNA / Fluoruracila Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article