Your browser doesn't support javascript.
loading
A systematic survey of regional multi-taxon biodiversity: evaluating strategies and coverage.
Brunbjerg, Ane Kirstine; Bruun, Hans Henrik; Brøndum, Lars; Classen, Aimée T; Dalby, Lars; Fog, Kåre; Frøslev, Tobias G; Goldberg, Irina; Hansen, Anders Johannes; Hansen, Morten D D; Høye, Toke T; Illum, Anders A; Læssøe, Thomas; Newman, Gregory S; Skipper, Lars; Søchting, Ulrik; Ejrnæs, Rasmus.
Afiliação
  • Brunbjerg AK; Section for Biodiversity & Conservation, Department of Bioscience, Aarhus University, 8410, Rønde, Denmark. akb@bios.au.dk.
  • Bruun HH; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
  • Brøndum L; Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
  • Classen AT; Natural History Museum Aarhus, 8000, Aarhus C, Denmark.
  • Dalby L; Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA.
  • Fog K; Centre for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark.
  • Frøslev TG; Section for Biodiversity & Conservation, Department of Bioscience, Aarhus University, 8410, Rønde, Denmark.
  • Goldberg I; , Veksø, Denmark.
  • Hansen AJ; Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
  • Hansen MDD; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
  • Høye TT; Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
  • Illum AA; Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
  • Læssøe T; Natural History Museum Aarhus, 8000, Aarhus C, Denmark.
  • Newman GS; Section for Biodiversity & Conservation, Department of Bioscience, Aarhus University, 8410, Rønde, Denmark.
  • Skipper L; Arctic Research Centre, Aarhus University, Ny Munkegade 114, Building 1540, 8000, Aarhus C, Denmark.
  • Søchting U; Centre for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark.
  • Ejrnæs R; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
BMC Ecol ; 19(1): 43, 2019 10 15.
Article em En | MEDLINE | ID: mdl-31615504
ABSTRACT

BACKGROUND:

In light of the biodiversity crisis and our limited ability to explain variation in biodiversity, tools to quantify spatial and temporal variation in biodiversity and its underlying drivers are critically needed. Inspired by the recently published ecospace framework, we developed and tested a sampling design for environmental and biotic mapping. We selected 130 study sites (40 × 40 m) across Denmark using stratified random sampling along the major environmental gradients underlying biotic variation. Using standardized methods, we collected site species data on vascular plants, bryophytes, macrofungi, lichens, gastropods and arthropods. To evaluate sampling efficiency, we calculated regional coverage (relative to the known species number per taxonomic group), and site scale coverage (i.e., sample completeness per taxonomic group at each site). To extend taxonomic coverage to organisms that are difficult to sample by classical inventories (e.g., nematodes and non-fruiting fungi), we collected soil for metabarcoding. Finally, to assess site conditions, we mapped abiotic conditions, biotic resources and habitat continuity.

RESULTS:

Despite the 130 study sites only covering a minute fraction (0.0005%) of the total Danish terrestrial area, we found 1774 species of macrofungi (54% of the Danish fungal species pool), 663 vascular plant species (42%), 254 bryophyte species (41%) and 200 lichen species (19%). For arthropods, we observed 330 spider species (58%), 123 carabid beetle species (37%) and 99 hoverfly species (33%). Overall, sample coverage was remarkably high across taxonomic groups and sufficient to capture substantial spatial variation in biodiversity across Denmark. This inventory is nationally unprecedented in detail and resulted in the discovery of 143 species with no previous record for Denmark. Comparison between plant OTUs detected in soil DNA and observed plant species confirmed the usefulness of carefully curated environmental DNA-data. Correlations among species richness for taxonomic groups were predominantly positive, but did not correlate well among all taxa suggesting differential and complex biotic responses to environmental variation.

CONCLUSIONS:

We successfully and adequately sampled a wide range of diverse taxa along key environmental gradients across Denmark using an approach that includes multi-taxon biodiversity assessment and ecospace mapping. Our approach is applicable to assessments of biodiversity in other regions and biomes where species are structured along environmental gradient.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Biodiversidade Tipo de estudo: Qualitative_research País/Região como assunto: Europa Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Biodiversidade Tipo de estudo: Qualitative_research País/Região como assunto: Europa Idioma: En Ano de publicação: 2019 Tipo de documento: Article