Hexadecanuclear MnII2MnIII14 Molecular Torus Built from in Situ Tandem Ligand Transformations.
Inorg Chem
; 58(21): 14331-14337, 2019 Nov 04.
Article
em En
| MEDLINE
| ID: mdl-31647227
A mixed-valent hexadecanuclear manganese cluster, [MnII2MnIII14(trz)14(thetach)4(µ3-O)8(H2O)10](ClO4)6 (Mn16), containing two MnII and 14 MnIII ions, is constructed from mixed in situ generated ligands, 1,2,3-triazole (Htrz) and 1,3,5-tri(2-hydroxyethyl)-1,3,5-triazacyclohexane (H3thetach). Remarkably, both ligands were not initially added into the reaction system, and their formations involve the in situ ligand decomposition and subsequent condensation reactions. The core of Mn16 is an elongated torus comprised of eight Mn atoms and four [Mn2O2] subunits bridged by oxo or alkoxide. The high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) of Mn16 dissolved in CH3CN indicates its structure remains intact as +3 and +4 species. Temperature and field dependent magnetization revealed predominantly antiferromagnetic exchange interactions within the cluster. The work provides one-pot synthesis of high-nuclearity manganese clusters using the ligands generated by in situ reactions in a tandem fashion.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article