Your browser doesn't support javascript.
loading
Loss of MsrB1 perturbs spatial learning and long-term potentiation/long-term depression in mice.
Shi, Tengrui; Yang, Yujie; Zhang, Zhonghao; Zhang, Lei; Song, Jianxi; Ping, Yongjing; Du, Xiubo; Song, Guoli; Liu, Qiong; Li, Nan.
Afiliação
  • Shi T; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Yang Y; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: yangyujie2016@emai.szu.edu.cn.
  • Zhang Z; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: zhangzhonghao@email.szu.edu.cn.
  • Zhang L; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
  • Song J; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
  • Ping Y; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: yongjing.ping@dukekunshan.edu.cn.
  • Du X; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: duxiubo@szu.edu.cn.
  • Song G; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: lilys@szu.edu.cn.
  • Liu Q; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: liuqiong@szu.edu.cn.
  • Li N; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China. Electronic address: lin@szu.edu.cn.
Neurobiol Learn Mem ; 166: 107104, 2019 12.
Article em En | MEDLINE | ID: mdl-31672630
MsrB1 belongs to the methionine sulfoxide reductase family, it is also known as selenoprotein R for the sake of possessing a selenocysteine residue. It has been reported that MsrB1 could interact with actin, TRPM6, clusterin, and amyloid-beta in vitro. Thus, we presumed that MsrB1 may play an important role in central nervous system. To examine whether MsrB1 knockout has any effects on brain development or learning behavior, we carried out histological study on brains of MsrB1 deficient mice, and further tested spatial learning ability and long-term synaptic plasticity of these mice by using Morris water maze and electrophysiological methods. It was observed that loss of MsrB1 did not perturb the overall development of central nervous system except for the astrogliosis in hippocampus, however, it led mice to be incapable in spatial learning and severe impairments in LTP/LTD expression in CA1 of brain slices, along with the down-regulation of the synaptic proteins including PSD95, SYP, GluN2A and GluN2B, as well as the dramatic decrease of CaMKIIs phosphorylation at 286(287) compared with wild type mice. Taken together, these results suggest that MsrB1 is essential for mice spatial learning and LTP/LTD induction, and the MsrB1 related redox homeostasis may be involved in regulating the phosphorylation of CaMKIIs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potenciação de Longa Duração / Depressão Sináptica de Longo Prazo / Metionina Sulfóxido Redutases / Aprendizagem Espacial / Hipocampo Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potenciação de Longa Duração / Depressão Sináptica de Longo Prazo / Metionina Sulfóxido Redutases / Aprendizagem Espacial / Hipocampo Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article