Your browser doesn't support javascript.
loading
A very-high-energy component deep in the γ-ray burst afterglow.
Abdalla, H; Adam, R; Aharonian, F; Ait Benkhali, F; Angüner, E O; Arakawa, M; Arcaro, C; Armand, C; Ashkar, H; Backes, M; Barbosa Martins, V; Barnard, M; Becherini, Y; Berge, D; Bernlöhr, K; Bissaldi, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bonnefoy, S; Bregeon, J; Breuhaus, M; Brun, F; Brun, P; Bryan, M; Büchele, M; Bulik, T; Bylund, T; Capasso, M; Caroff, S; Carosi, A; Casanova, S; Cerruti, M; Chand, T; Chandra, S; Chen, A; Colafrancesco, S; Curylo, M; Davids, I D; Deil, C; Devin, J; deWilt, P; Dirson, L; Djannati-Ataï, A; Dmytriiev, A; Donath, A; Doroshenko, V; Dyks, J; Egberts, K.
Afiliação
  • Abdalla H; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • Adam R; Laboratoire Leprince-Ringuet, École Polytechnique, UMR 7638, CNRS/IN2P3, Institut Polytechnique de Paris, Paris, France.
  • Aharonian F; Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
  • Ait Benkhali F; Dublin Institute for Advanced Studies, Dublin, Ireland.
  • Angüner EO; High Energy Astrophysics Laboratory, RAU, Yerevan, Armenia.
  • Arakawa M; Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
  • Arcaro C; Aix Marseille Université, CNRS/IN2P3, CPPM, Marseilles, France.
  • Armand C; Department of Physics, Rikkyo University, Tokyo, Japan.
  • Ashkar H; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • Backes M; Laboratoire d'Annecy de Physique des Particules, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAPP, Annecy, France.
  • Barbosa Martins V; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Barnard M; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • Becherini Y; Department of Physics, University of Namibia, Windhoek, Namibia.
  • Berge D; DESY, Zeuthen, Germany.
  • Bernlöhr K; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • Bissaldi E; Department of Physics and Electrical Engineering, Linnaeus University, Växjö, Sweden.
  • Blackwell R; DESY, Zeuthen, Germany.
  • Böttcher M; Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
  • Boisson C; Dipartimento Interateneo di Fisica, Politecnico di Bari, Bari, Italy.
  • Bolmont J; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy.
  • Bonnefoy S; School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
  • Bregeon J; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • Breuhaus M; LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Paris, France.
  • Brun F; Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
  • Brun P; DESY, Zeuthen, Germany.
  • Bryan M; Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, CC 72, Montpellier, France.
  • Büchele M; Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
  • Bulik T; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Bylund T; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Capasso M; GRAPPA, Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands.
  • Caroff S; Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Carosi A; Astronomical Observatory, The University of Warsaw, Warsaw, Poland.
  • Casanova S; Department of Physics and Electrical Engineering, Linnaeus University, Växjö, Sweden.
  • Cerruti M; Institut für Astronomie und Astrophysik, Universität Tübingen, Tübingen, Germany.
  • Chand T; Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
  • Chandra S; Laboratoire d'Annecy de Physique des Particules, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAPP, Annecy, France.
  • Chen A; Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
  • Colafrancesco S; Instytut Fizyki Jadrowej PAN, Krakow, Poland.
  • Curylo M; Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
  • Davids ID; Institut de Ciències del Cosmos (ICC UB), Universitat de Barcelona (IEEC-UB), Barcelona, Spain.
  • Deil C; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • Devin J; Centre for Space Research, North-West University, Potchefstroom, South Africa.
  • deWilt P; School of Physics, University of the Witwatersrand, Johannesburg, South Africa.
  • Dirson L; School of Physics, University of the Witwatersrand, Johannesburg, South Africa.
  • Djannati-Ataï A; Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
  • Dmytriiev A; Astronomical Observatory, The University of Warsaw, Warsaw, Poland.
  • Donath A; Department of Physics, University of Namibia, Windhoek, Namibia.
  • Doroshenko V; Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
  • Dyks J; Centre d'Études Nucléaires de Bordeaux Gradignan, Université Bordeaux, CNRS/IN2P3, Gradignan, France.
  • Egberts K; School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
Nature ; 575(7783): 464-467, 2019 11.
Article em En | MEDLINE | ID: mdl-31748724
ABSTRACT
Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe1. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed2. GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article