Your browser doesn't support javascript.
loading
Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the echinocandin-producing fungus Aspergillus pachycristatus.
Lan, Nan; Yue, Qun; An, Zhiqiang; Bills, Gerald F.
Afiliação
  • Lan N; Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA.
  • Yue Q; Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA.
  • An Z; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  • Bills GF; Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA.
J Ind Microbiol Biotechnol ; 47(1): 155-168, 2020 Jan.
Article em En | MEDLINE | ID: mdl-31758414
ABSTRACT
The impact of the global secondary metabolite regulators LaeA and VeA on echinocandin B production and morphological development was evaluated in the industrial production strain Aspergillus pachycristatus NRRL 11440. Other representative secondary metabolites were examined as well to determine if the velvet complex functions as in A. nidulans and other species of fungi. Genetic methods used for gene manipulations in A. nidulans were applied to A. pachycristatus. Separate deletions of genes Apc.laeA and Apc.veA resulted in similar yet differing phenotypes in strain NRRL 11440. Disruption of Apc.laeA and Apc.veA significantly reduced, but did not eliminate, the production of echinocandin B. Similar to what has been observed in A. nidulans, the production of sterigmatocystin was nearly eliminated in both mutants. Quantitative reverse transcription PCR analyses confirmed that selected genes of both the echinocandin B and sterigmatocystin gene clusters were down-regulated in both mutant types. The two mutants differed with respect to growth of aerial hyphae, pigmentation, development of conidiophores, conidial germination rate, and ascospore maturation. Further functional annotation of key regulatory genes in A. pachycristatus and related Aspergillus species will improve our understanding of regulation of echinocandin production and co-produced metabolites.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aspergillus / Proteínas Fúngicas / Equinocandinas / Metabolismo Secundário Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aspergillus / Proteínas Fúngicas / Equinocandinas / Metabolismo Secundário Idioma: En Ano de publicação: 2020 Tipo de documento: Article