A Framework for Predicting Impactability of Digital Care Management Using Machine Learning Methods.
Popul Health Manag
; 23(4): 319-325, 2020 08.
Article
em En
| MEDLINE
| ID: mdl-31765282
Digital care management programs can reduce health care costs and improve quality of care. However, it is unclear how to target patients who are most likely to benefit from these programs ex ante, a shortcoming of current "risk score"-based approaches across many interventions. This study explores a framework to define impactability by using machine learning (ML) models to identify those patients most likely to benefit from a digital health intervention for care management. Anonymized insurance claims data were used from a commercially insured population across several US states and combined with inferred sociodemographic data. The approach involves creating 2 models and the comparative analysis of the methodologies and performances therein. The authors first train a cost prediction model to calculate the differences in predicted (without intervention) versus actual (with onboarding onto digital health platform) health care expenditures for patients (N = 5600). This enables classification impactability if differences in predicted versus actual costs meet a predetermined threshold. Several random forest and logistic regression machine learning models were then trained to accurately categorize new patients as impactable versus not impactable. These parameters are modified through grid search to define the parameters that deliver optimal performance, reaching an overall sensitivity of 0.77 and specificity of 0.65 among all models. This approach shows that impactability for a digital health intervention can be successfully defined using ML methods, thus enabling efficient allocation of resources. This framework is generalizable to analyzing impactability of any intervention and can contribute to realizing closed-loop feedback systems for continuous improvement in health care.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Modelos Estatísticos
/
Telemedicina
/
Aprendizado de Máquina
/
Tecnologia Digital
Tipo de estudo:
Health_economic_evaluation
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article