Your browser doesn't support javascript.
loading
Mechanical Respond and Failure Mode of Large Size Honeycomb Sandwiched Composites under In-Plane Shear Load.
Wang, Mo-Nan; Wang, Baoqin; Liu, Changxi; Zhang, Guangxin; Wan, Yumin; Zhang, Fa.
Afiliação
  • Wang MN; School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China.
  • Wang B; School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China.
  • Liu C; College of Mechanical and Electronic Engineering, Heilongjiang Institute of Technology, Harbin 150030, China.
  • Zhang G; College of Mechanical and Electronic Engineering, Heilongjiang Institute of Technology, Harbin 150030, China.
  • Wan Y; Beijing Key Laboratory of Civil Aircraft Structures and Composite Materials, Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China.
  • Zhang F; School of Material Science and Engineering, Beihang University, Beijing 100191, China.
Molecules ; 24(23)2019 Nov 21.
Article em En | MEDLINE | ID: mdl-31766553
ABSTRACT
The present work focuses on the in-plane shear respond and failure mode of large size honeycomb sandwich composites which consist of plain weave carbon fabric laminate skins and aramid paper core. A special size specimen based on a typical element of aircraft fuselage was designed and manufactured. A modified in-plane shear test method and the corresponding fixture was developed. Three large size specimens were tested. The distributed strain gauges were used to monitor the mechanical response and ultimate bearing capacity. The results show that a linear respond of displacement and strain appears with the increase of the load. The average shear failure load reaches 205.68 kN with the shear failure occurring on the face sheet, and the maximum shear strain monitored on the composite plate is up to 16,115 µÎµ. A combination of theoretical analysis and finite element method (FEM) was conducted to predict the shear field distribution and the overall buckling load. The out-of-plane displacement field distribution and in-plane shear strain field distribution under the pure shear loading were revealed. The theoretical analysis method was deduced to obtain the variation rule of the shear buckling load. A good agreement was achieved among the experiment, theoretical analysis, and FEM results. It can be concluded that the theoretical analysis method is relatively conservative, and the FEM is more accurate in case of deformation and strain. The results predicted by h element and p element methods are very close. The results of the study could provide data support for the comprehensive promotion of the design and application of honeycomb sandwich composites.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Resistência à Tração / Materiais Biocompatíveis / Nanocompostos / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Resistência à Tração / Materiais Biocompatíveis / Nanocompostos / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article