Your browser doesn't support javascript.
loading
HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion.
van der Woude, Lennard C; Perrella, Giorgio; Snoek, Basten L; van Hoogdalem, Mark; Novák, Ondrej; van Verk, Marcel C; van Kooten, Heleen N; Zorn, Lennert E; Tonckens, Rolf; Dongus, Joram A; Praat, Myrthe; Stouten, Evelien A; Proveniers, Marcel C G; Vellutini, Elisa; Patitaki, Eirini; Shapulatov, Umidjon; Kohlen, Wouter; Balasubramanian, Sureshkumar; Ljung, Karin; van der Krol, Alexander R; Smeekens, Sjef; Kaiserli, Eirini; van Zanten, Martijn.
Afiliação
  • van der Woude LC; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Perrella G; Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
  • Snoek BL; Trisaia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 75026 Rotondella (Matera), Italy.
  • van Hoogdalem M; Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Novák O; Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.
  • van Verk MC; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
  • van Kooten HN; Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, 78371 Olomouc, Czech Republic.
  • Zorn LE; Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Tonckens R; Plant Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Dongus JA; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Praat M; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Stouten EA; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Proveniers MCG; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Vellutini E; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Patitaki E; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Shapulatov U; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Kohlen W; Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
  • Balasubramanian S; Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
  • Ljung K; Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.
  • van der Krol AR; Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands.
  • Smeekens S; School of Biological Sciences, Monash University, VIC 3800, Melbourne, Australia.
  • Kaiserli E; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
  • van Zanten M; Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.
Proc Natl Acad Sci U S A ; 116(50): 25343-25354, 2019 12 10.
Article em En | MEDLINE | ID: mdl-31767749
Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histonas / Arabidopsis / Proteínas de Arabidopsis / Histona Desacetilases / Ácidos Indolacéticos Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histonas / Arabidopsis / Proteínas de Arabidopsis / Histona Desacetilases / Ácidos Indolacéticos Idioma: En Ano de publicação: 2019 Tipo de documento: Article