Root colonization by heavy metal resistant Enterobacter and its influence on metal induced oxidative stress on Cajanus cajan.
J Sci Food Agric
; 100(4): 1532-1540, 2020 Mar 15.
Article
em En
| MEDLINE
| ID: mdl-31769023
BACKGROUND: Heavy metal resistant bacterium Enterobacter sp. C1D was evaluated for cadmium (Cd) mediated exopolysaccharide production, biofilm formation and legume root colonization ability under Cd stress to alleviate metal induced stress. RESULTS: The plant was sensitive to Cd (IC50 3-4 µg mL-1 ), whereas the bacterium showed high Cd tolerance (MIC99 120 µg mL-1 ). Confocal laser scanning microscopy of the Cajanus cajan roots showed heavy loads of green fluorescence protein labelled Enterobacter sp. C1D on the surface of plant root, specifically at the point of root hair/lateral root formation along with cortex, even under metal stress. The root colonizing ability of Enterobacter sp. C1D was not affected by the presence of Rhizobium and the bacteria could be observed after 30 days of incubation in soil. Various plant growth parameters, antioxidant metabolites and oxidative stress indicator were significantly influenced by bacterial treatment, which, overall, reduced the adverse effect of Cd. CONCLUSION: Heavy metal tolerant bacteria may be a good choice for the development of biofertilizers and may work well with the native soil microbes such as Rhizobium under the metal polluted soil. © 2019 Society of Chemical Industry.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Cádmio
/
Raízes de Plantas
/
Cajanus
/
Enterobacter
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article