Your browser doesn't support javascript.
loading
Inhibition of calcium-calmodulin-dependent phosphodiesterase (PDE1) suppresses inflammatory responses.
O'Brien, Jennifer J; O'Callaghan, James P; Miller, Diane B; Chalgeri, Suman; Wennogle, Lawrence P; Davis, Robert E; Snyder, Gretchen L; Hendrick, Joseph P.
Afiliação
  • O'Brien JJ; Intra-Cellular Therapies, Inc., The Alexandria Center for Life Sciences, 430 East 29th St Suite 900, New York, NY 10016, United States of America.
  • O'Callaghan JP; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
  • Miller DB; Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
  • Chalgeri S; Intra-Cellular Therapies, Inc., The Alexandria Center for Life Sciences, 430 East 29th St Suite 900, New York, NY 10016, United States of America.
  • Wennogle LP; Intra-Cellular Therapies, Inc., The Alexandria Center for Life Sciences, 430 East 29th St Suite 900, New York, NY 10016, United States of America.
  • Davis RE; Intra-Cellular Therapies, Inc., The Alexandria Center for Life Sciences, 430 East 29th St Suite 900, New York, NY 10016, United States of America.
  • Snyder GL; Intra-Cellular Therapies, Inc., The Alexandria Center for Life Sciences, 430 East 29th St Suite 900, New York, NY 10016, United States of America. Electronic address: gsnyder@intracellulartherapies.com.
  • Hendrick JP; Intra-Cellular Therapies, Inc., The Alexandria Center for Life Sciences, 430 East 29th St Suite 900, New York, NY 10016, United States of America.
Mol Cell Neurosci ; 102: 103449, 2020 01.
Article em En | MEDLINE | ID: mdl-31770590
ABSTRACT
A novel, potent, and highly specific inhibitor of calcium-calmodulin-dependent phosphodiesterases (PDE) of the PDE1 family, ITI-214, was used to investigate the role of PDE1 in inflammatory responses. ITI-214 dose-dependently suppressed lipopolysaccharide (LPS)-induced gene expression of pro-inflammatory cytokines in an immortalized murine microglial cell line, BV2 cells. RNA profiling (RNA-Seq) was used to analyze the impact of ITI-214 on the BV2 cell transcriptome in the absence and the presence of LPS. ITI-214 was found to regulate classes of genes that are involved in inflammation and cell migration responses to LPS exposure. The gene expression changes seen with ITI-214 treatment were distinct from those elicited by inhibitors of other PDEs with anti-inflammatory activity (e.g., a PDE4 inhibitor), indicating a distinct mechanism of action for PDE1. Functionally, ITI-214 inhibited ADP-induced migration of BV2 cells through a P2Y12-receptor-dependent pathway, possibly due to increases in the extent of cAMP and VASP phosphorylation downstream of receptor activation. Importantly, this effect was recapitulated in P2 rat microglial cells in vitro, indicating that these pathways are active in native microglial cells. These studies are the first to demonstrate that inhibition of PDE1 exerts anti-inflammatory effects through effects on microglia signaling pathways. The ability of PDE1 inhibitors to prevent or dampen excessive inflammatory responses of BV2 cells and microglia provides a basis for exploring their therapeutic utility in the treatment of neurodegenerative diseases associated with increased inflammation and microglia proliferation such as Parkinson's disease and Alzheimer's disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microglia / Inibidores Enzimáticos / Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 / Compostos Heterocíclicos de 4 ou mais Anéis / Anti-Inflamatórios Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microglia / Inibidores Enzimáticos / Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 / Compostos Heterocíclicos de 4 ou mais Anéis / Anti-Inflamatórios Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article