Your browser doesn't support javascript.
loading
Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis.
Dasgupta, Medhanjali; Budday, Dominik; de Oliveira, Saulo H P; Madzelan, Peter; Marchany-Rivera, Darya; Seravalli, Javier; Hayes, Brandon; Sierra, Raymond G; Boutet, Sébastien; Hunter, Mark S; Alonso-Mori, Roberto; Batyuk, Alexander; Wierman, Jennifer; Lyubimov, Artem; Brewster, Aaron S; Sauter, Nicholas K; Applegate, Gregory A; Tiwari, Virendra K; Berkowitz, David B; Thompson, Michael C; Cohen, Aina E; Fraser, James S; Wall, Michael E; van den Bedem, Henry; Wilson, Mark A.
Afiliação
  • Dasgupta M; Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588.
  • Budday D; Chair of Applied Dynamics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • de Oliveira SHP; Bioengineering Department, Stanford University, Stanford, CA 94305.
  • Madzelan P; Bioscience Division, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Marchany-Rivera D; Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588.
  • Seravalli J; Chemistry Department, University of Puerto Rico, Mayagüez PR 00681.
  • Hayes B; Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588.
  • Sierra RG; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Boutet S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Hunter MS; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Alonso-Mori R; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Batyuk A; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Wierman J; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Lyubimov A; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Brewster AS; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Sauter NK; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • Applegate GA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Tiwari VK; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Berkowitz DB; Department of Chemistry, University of Nebraska, Lincoln, NE 68588.
  • Thompson MC; Department of Chemistry, University of Nebraska, Lincoln, NE 68588.
  • Cohen AE; Department of Chemistry, University of Nebraska, Lincoln, NE 68588.
  • Fraser JS; Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biology, University of California, San Francisco, CA 94158.
  • Wall ME; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025.
  • van den Bedem H; Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biology, University of California, San Francisco, CA 94158.
  • Wilson MA; Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87505.
Proc Natl Acad Sci U S A ; 116(51): 25634-25640, 2019 12 17.
Article em En | MEDLINE | ID: mdl-31801874
ABSTRACT
How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cristalografia por Raios X / Enzimas Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cristalografia por Raios X / Enzimas Idioma: En Ano de publicação: 2019 Tipo de documento: Article