Your browser doesn't support javascript.
loading
Molecular Modelling of Islet ß-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus.
Lorenzo, Petra I; Martín-Montalvo, Alejandro; Cobo Vuilleumier, Nadia; Gauthier, Benoit R.
Afiliação
  • Lorenzo PI; Andalusian Center for Molecular Biology and Regenerative Medicine, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
  • Martín-Montalvo A; Andalusian Center for Molecular Biology and Regenerative Medicine, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
  • Cobo Vuilleumier N; Andalusian Center for Molecular Biology and Regenerative Medicine, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
  • Gauthier BR; Andalusian Center for Molecular Biology and Regenerative Medicine, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
Int J Mol Sci ; 20(24)2019 12 06.
Article em En | MEDLINE | ID: mdl-31817798
ABSTRACT
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with ß-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic ß-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in ß-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ilhotas Pancreáticas / Diabetes Gestacional / Diabetes Mellitus Tipo 2 Tipo de estudo: Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ilhotas Pancreáticas / Diabetes Gestacional / Diabetes Mellitus Tipo 2 Tipo de estudo: Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2019 Tipo de documento: Article