Your browser doesn't support javascript.
loading
Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses.
Ren, Chao; Qi, Yongbo; Huang, Guoyong; Yao, Shiyuan; You, Jinwei; Hu, Hongqing.
Afiliação
  • Ren C; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Qi Y; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Huang G; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Yao S; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • You J; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Hu H; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electronic address: hqhu@mail.hzau.edu.cn.
J Environ Sci (China) ; 88: 209-216, 2020 Feb.
Article em En | MEDLINE | ID: mdl-31862062
ABSTRACT
Cell wall polysaccharides play a vital role in binding with toxic metals such as copper (Cu) ions. However, it is still unclear whether the major binding site of Cu in the cell wall varies with different degrees of Cu stresses. Moreover, the contribution of each cell wall polysaccharide fraction to Cu sequestration with different degrees of Cu stresses also remains to be verified. The distribution of Cu in cell wall polysaccharide fractions of castor (Ricinus communis L.) root was investigated with various Cu concentrations in the hydroponic experiment. The results showed that the hemicellulose1 (HC1) fraction fixed 44.9%-67.8% of the total cell wall Cu under Cu stress. In addition, the pectin fraction and hemicelluloses2 (HC2) fraction also contributed to the Cu binding in root cell wall, accounting for 11.0%-25.9% and 14.1%-26.6% of the total cell wall Cu under Cu treatments, respectively. When the Cu levels were ≤25 µmol/L, pectin and HC2 contributed equally to Cu storage in root cell wall. However, when the Cu level was higher than 25 µmol/L, the ability of the pectin to bind Cu was easy to reach saturation. Much more Cu ions were bound on HC1 and HC2 fractions, and the HC2 played a much more important role in Cu binding than pectin. Combining fourier transform infrared (FT-IR) and two-dimensional correlation analysis (2D-COS) techniques, the hemicellulose components were showed not only to accumulate most of Cu in cell wall, but also respond fastest to Cu stress.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polissacarídeos / Ricinus / Poluentes do Solo / Raízes de Plantas / Cobre Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polissacarídeos / Ricinus / Poluentes do Solo / Raízes de Plantas / Cobre Idioma: En Ano de publicação: 2020 Tipo de documento: Article