Your browser doesn't support javascript.
loading
Adaptive group-regularized logistic elastic net regression.
Münch, Magnus M; Peeters, Carel F W; Van Der Vaart, Aad W; Van De Wiel, Mark A.
Afiliação
  • Münch MM; Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, PO Box 7057, 1007 MB Amsterdam, The Netherlands and Mathematical Institute, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands.
  • Peeters CFW; Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
  • Van Der Vaart AW; Mathematical Institute, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands.
  • Van De Wiel MA; Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, PO Box 7057, 1007 MB Amsterdam, The Netherlands and MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK.
Biostatistics ; 22(4): 723-737, 2021 10 13.
Article em En | MEDLINE | ID: mdl-31886488
In high-dimensional data settings, additional information on the features is often available. Examples of such external information in omics research are: (i) $p$-values from a previous study and (ii) omics annotation. The inclusion of this information in the analysis may enhance classification performance and feature selection but is not straightforward. We propose a group-regularized (logistic) elastic net regression method, where each penalty parameter corresponds to a group of features based on the external information. The method, termed gren, makes use of the Bayesian formulation of logistic elastic net regression to estimate both the model and penalty parameters in an approximate empirical-variational Bayes framework. Simulations and applications to three cancer genomics studies and one Alzheimer metabolomics study show that, if the partitioning of the features is informative, classification performance, and feature selection are indeed enhanced.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genômica / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genômica / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article