Your browser doesn't support javascript.
loading
Discovery of Small Molecules That Target the Phosphatidylinositol (3,4,5) Trisphosphate (PIP3)-Dependent Rac Exchanger 1 (P-Rex1) PIP3-Binding Site and Inhibit P-Rex1-Dependent Functions in Neutrophils.
Cash, Jennifer N; Chandan, Naincy R; Hsu, Alan Y; Sharma, Prateek V; Deng, Qing; Smrcka, Alan V; Tesmer, John J G.
Afiliação
  • Cash JN; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
  • Chandan NR; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
  • Hsu AY; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
  • Sharma PV; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
  • Deng Q; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
  • Smrcka AV; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
  • Tesmer JJG; Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and M
Mol Pharmacol ; 97(3): 226-236, 2020 03.
Article em En | MEDLINE | ID: mdl-31900312
ABSTRACT
Phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a Rho guanine-nucleotide exchange factor that was originally discovered in neutrophils and is regulated by G protein ßγ subunits and the lipid PIP3 in response to chemoattractants. P-Rex1 has also become increasingly recognized for its role in promoting metastasis of breast cancer, prostate cancer, and melanoma. Recent structural, biochemical, and biologic work has shown that binding of PIP3 to the pleckstrin homology (PH) domain of P-Rex1 is required for its activation in cells. Here, differential scanning fluorimetry was used in a medium-throughput screen to identify six small molecules that interact with the P-Rex1 PH domain and block binding of and activation by PIP3 Three of these compounds inhibit N-formylmethionyl-leucyl-phenylalanine induced spreading of human neutrophils as well as activation of the GTPase Rac2, both of which are downstream effects of P-Rex1 activity. Furthermore, one of these compounds reduces neutrophil velocity and inhibits neutrophil recruitment in response to inflammation in a zebrafish model. These results suggest that the PH domain of P-Rex1 is a tractable drug target and that these compounds might be useful for inhibiting P-Rex1 in other experimental contexts. SIGNIFICANCE STATEMENT A set of small molecules identified in a thermal shift screen directed against the phosphatidylinositol (3,4,5) trisphosphate-dependent Rac exchanger 1 (P-Rex1) pleckstrin homology domain has effects consistent with P-Rex1 inhibition in neutrophils.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatos de Fosfatidilinositol / Fatores de Troca do Nucleotídeo Guanina / Descoberta de Drogas / Neutrófilos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatos de Fosfatidilinositol / Fatores de Troca do Nucleotídeo Guanina / Descoberta de Drogas / Neutrófilos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article