Objective ADHD Diagnosis Using Convolutional Neural Networks Over Daily-Life Activity Records.
IEEE J Biomed Health Inform
; 24(9): 2690-2700, 2020 09.
Article
em En
| MEDLINE
| ID: mdl-31905156
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common neurobehavioral disorder in children and adolescents. However, its etiology is still unknown, and this hinders the existence of reliable, fast and inexpensive standard diagnostic methods. OBJECTIVE: This paper proposes an end-to-end methodology for automatic diagnosis of the combined type of ADHD. METHODS: Diagnosis is based on the analysis of 24 hour-long activity records using Convolutional Neural Networks to classify spectrograms of activity windows. RESULTS: We achieve up to [Formula: see text] average sensitivity, [Formula: see text] specificity and AUC values over [Formula: see text]. Overall, our figures overcome those obtained by actigraphy-based methods reported in the literature as well as others based on more expensive (and not so convenient) acquisition methods. CONCLUSION: These results reinforce the idea that combining deep learning techniques together with actimetry can lead to a robust and efficient system for objective ADHD diagnosis. SIGNIFICANCE: Reliance on simple activity measurements leads to an inexpensive and non-invasive objective diagn-ostic method, which can be easily implemented with daily devices.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Transtorno do Deficit de Atenção com Hiperatividade
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Adolescent
/
Child
/
Humans
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article