Your browser doesn't support javascript.
loading
Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein-Metal-Organic Frameworks.
Ogata, Alana F; Rakowski, Alexander M; Carpenter, Brooke P; Fishman, Dmitry A; Merham, Jovany G; Hurst, Paul J; Patterson, Joseph P.
Afiliação
  • Ogata AF; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
  • Rakowski AM; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
  • Carpenter BP; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
  • Fishman DA; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
  • Merham JG; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
  • Hurst PJ; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
  • Patterson JP; Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
J Am Chem Soc ; 142(3): 1433-1442, 2020 01 22.
Article em En | MEDLINE | ID: mdl-31913610
ABSTRACT
Protein-metal-organic frameworks (p-MOFs) are a prototypical example of how synthetic biological hybrid systems can be used to develop next-generation materials. Controlling p-MOF formation enables the design of hybrid materials with enhanced biological activity and high stability. However, such control is yet to be fully realized due to an insufficient understanding of the governing nucleation and growth mechanisms in p-MOF systems. The structural evolution of p-MOFs was probed by cryo-transmission electron microscopy, revealing nonclassical pathways via dissolution-recrystallization of highly hydrated amorphous particles and solid-state transformation of a protein-rich amorphous phase. On the basis of these data, we propose a general description of p-MOF crystallization which is best characterized by particle aggregation and colloidal theory for future synthetic strategies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Estruturas Metalorgânicas Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Estruturas Metalorgânicas Idioma: En Ano de publicação: 2020 Tipo de documento: Article