Your browser doesn't support javascript.
loading
Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling.
He, Yuhu; Zuo, Caojian; Jia, Daile; Bai, Peiyuan; Kong, Deping; Chen, Di; Liu, Guizhu; Li, Juanjuan; Wang, Yuanyang; Chen, Guilin; Yan, Shuai; Xiao, Bing; Zhang, Jian; Piao, Lingjuan; Li, Yanli; Deng, Yi; Li, Bin; Roux, Philippe P; Andreasson, Katrin I; Breyer, Richard M; Su, Yunchao; Wang, Jian; Lyu, Ankang; Shen, Yujun; Yu, Ying.
Afiliação
  • He Y; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Zuo C; Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
  • Jia D; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Bai P; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Kong D; Department of Cardiology, Shanghai General Hospital, and.
  • Chen D; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Liu G; Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  • Li J; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Wang Y; Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  • Chen G; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Yan S; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Xiao B; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Zhang J; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Piao L; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Li Y; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Deng Y; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Li B; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Roux PP; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Andreasson KI; Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Breyer RM; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Su Y; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
  • Wang J; Orthopedic Institute, Soochow University, Jiangsu, China.
  • Lyu A; Institute for Research in Immunology and Cancer and.
  • Shen Y; Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada.
  • Yu Y; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California.
Am J Respir Crit Care Med ; 201(10): 1263-1276, 2020 05 15.
Article em En | MEDLINE | ID: mdl-31917615
ABSTRACT
Rationale Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).

Objectives:

To study the role of DP1 in the progression of PAH and its underlying mechanism.

Methods:

DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main

Results:

DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.

Conclusions:

DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Prostaglandina / Receptores Imunológicos / Remodelação Vascular / Alvo Mecanístico do Complexo 1 de Rapamicina / Hipertensão Arterial Pulmonar / Hipóxia Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Prostaglandina / Receptores Imunológicos / Remodelação Vascular / Alvo Mecanístico do Complexo 1 de Rapamicina / Hipertensão Arterial Pulmonar / Hipóxia Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article