Your browser doesn't support javascript.
loading
3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors.
Peng, Shuqiang; Li, Yuewei; Wu, Lixin; Zhong, Jie; Weng, Zixiang; Zheng, Longhui; Yang, Zhi; Miao, Jia-Tao.
Afiliação
  • Peng S; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China.
  • Li Y; University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China.
  • Wu L; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China.
  • Zhong J; University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China.
  • Weng Z; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China.
  • Zheng L; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China.
  • Yang Z; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China.
  • Miao JT; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China.
ACS Appl Mater Interfaces ; 12(5): 6479-6488, 2020 Feb 05.
Article em En | MEDLINE | ID: mdl-31927985
Advanced stretchable electronic sensors with a complex structure place higher requirements on the mechanical properties and manufacturing process of the stretchable substrate materials. Herein, three kinds of polyurethane acrylate oligomers were synthesized successfully and mixed with a commercial acrylate monomer (isobornyl acrylate) to prepare photocurable resins with a low viscosity for a digital light processing three-dimensional (3D) printer without custom equipment. Results showed that the resin containing poly(tetrahydrofuran) units (PPTMGA-40) exhibited optimal mechanical properties and shape recoverability. The tensile strength and elongation at break of PPTMGA-40 were 15.7 MPa and 414.3%, respectively. The unprecedented fatigue resistance of PPTMGA-40 allowed it to withstand 100 compression cycles at 80% strain without fracture. The transmittance of PPTMGA-40 reached 89.4% at 550 nm, showing high transparency. An ionic hydrogel was coated on the surface of 3D-printed structures to fabricate stretchable sensors, and their conductivity, transparency, and mechanical performance were characterized. A robust piezoresistive strain sensor with a high strength (∼6 MPa) and a wearable finger guard sensor were fabricated, demonstrating that this hydrogel-elastomer system can meet the requirements of applications for advanced stretchable electronic sensors and expand the usage scope.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article