Your browser doesn't support javascript.
loading
Towards Long-Term Photostability of Nickel Hydroxide/BiVO4 Photoanodes for Oxygen Evolution Catalysts via In Situ Catalyst Tuning.
Gao, Rui-Ting; He, Dan; Wu, Lijun; Hu, Kan; Liu, Xianhu; Su, Yiguo; Wang, Lei.
Afiliação
  • Gao RT; School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
  • He D; School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
  • Wu L; School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
  • Hu K; School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
  • Liu X; Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China.
  • Su Y; School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
  • Wang L; School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
Angew Chem Int Ed Engl ; 59(15): 6213-6218, 2020 Apr 06.
Article em En | MEDLINE | ID: mdl-31960559
ABSTRACT
Increasing long-term photostability of BiVO4 photoelectrode is an important issue for solar water splitting. The NiOOH oxygen evolution catalyst (OEC) has fast water oxidation kinetics compared to the FeOOH OEC. However, it generally shows a lower photoresponse and poor stability because of the more substantial interface recombination at the NiOOH/BiVO4 junction. Herein, we utilize a plasma etching approach to reduce both interface/surface recombination at NiOOH/BiVO4 and NiOOH/electrolyte junctions. Further, adding Fe2+ into the borate buffer electrolyte alleviates the active but unstable character of etched-NiOOH/BiVO4 , leading to an outstanding oxygen evolution over 200 h. The improved charge transfer and photostability can be attributed to the active defects and a mixture of NiOOH/NiO/Ni in OEC induced by plasma etching. Metallic Ni acts as the ion source for the in situ generation of the NiFe OEC over long-term durability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article