Your browser doesn't support javascript.
loading
Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections.
Kurmoo, Yasin; Hook, Andrew L; Harvey, Daniel; Dubern, Jean-Frédéric; Williams, Paul; Morgan, Stephen P; Korposh, Serhiy; Alexander, Morgan R.
Afiliação
  • Kurmoo Y; School of Pharmacy, Boots Science Building, University Park, Nottingham NG7 2RD, UK. morgan.alexander@nottingham.ac.uk.
Biomater Sci ; 8(5): 1464-1477, 2020 Mar 07.
Article em En | MEDLINE | ID: mdl-31965132
ABSTRACT
Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre sensors, incorporated into the lumen of endotracheal tubes (ETTs), to monitor in real time, Pseudomonas aeruginosa surface colonisation and biofilm formation. The wavelength shift of LPG attenuation bands was monitored for 24 h and compared with biofilm biomass, quantified using confocal fluorescence microscopy imaging. Biofilm formation was compared on uncoated ETTs and optical fibres, and on a biofilm resistant acrylate polymer, after challenge in an artificial sputum or minimal growth medium (RPMI-1640). The LPG sensor was able to detect a biofilm biomass as low as 81 µg cm-2, by comparison with the confocal image quantification. An empirical exponential function was found to link the optical attenuation wavelength shift with the inverse of the biofilm biomass, allowing quantification of biofouling from the spectral response. Quantification from the sensor allows infection interception and early device removal, to reduce, for example, the risk of ventilator associated pneumonia.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Pseudomonas aeruginosa / Infecções por Pseudomonas / Acrilatos / Biofilmes / Antibacterianos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Pseudomonas aeruginosa / Infecções por Pseudomonas / Acrilatos / Biofilmes / Antibacterianos Idioma: En Ano de publicação: 2020 Tipo de documento: Article