Your browser doesn't support javascript.
loading
Off to a slow start: Analyzing lag phases and accelerating rates in steady-state enzyme kinetics.
Zangelmi, Erika; Ronda, Luca; Castagna, Camilla; Campanini, Barbara; Veiga-da-Cunha, Maria; Van Schaftingen, Emile; Peracchi, Alessio.
Afiliação
  • Zangelmi E; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
  • Ronda L; Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
  • Castagna C; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
  • Campanini B; Department of Food and Drug, University of Parma, 43124, Parma, Italy.
  • Veiga-da-Cunha M; De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200, Bruxelles, Belgium.
  • Van Schaftingen E; De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200, Bruxelles, Belgium.
  • Peracchi A; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy. Electronic address: alessio.peracchi@unipr.it.
Anal Biochem ; 593: 113595, 2020 03 15.
Article em En | MEDLINE | ID: mdl-31987861
ABSTRACT
Steady-state enzyme kinetics typically relies on the measurement of 'initial rates', obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or 'lag phase'. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s-1.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Enzimas / Ensaios Enzimáticos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Enzimas / Ensaios Enzimáticos Idioma: En Ano de publicação: 2020 Tipo de documento: Article