Your browser doesn't support javascript.
loading
Longitudinal Development of Brain Iron Is Linked to Cognition in Youth.
Larsen, Bart; Bourque, Josiane; Moore, Tyler M; Adebimpe, Azeez; Calkins, Monica E; Elliott, Mark A; Gur, Ruben C; Gur, Raquel E; Moberg, Paul J; Roalf, David R; Ruparel, Kosha; Turetsky, Bruce I; Vandekar, Simon N; Wolf, Daniel H; Shinohara, Russell T; Satterthwaite, Theodore D.
Afiliação
  • Larsen B; Department of Psychiatry, Perelman School of Medicine, bart.larsen@pennmedicine.upenn.edu.
  • Bourque J; Department of Psychiatry, Perelman School of Medicine.
  • Moore TM; Department of Psychiatry, Perelman School of Medicine.
  • Adebimpe A; Department of Psychiatry, Perelman School of Medicine.
  • Calkins ME; Department of Psychiatry, Perelman School of Medicine.
  • Elliott MA; Department of Psychiatry, Perelman School of Medicine.
  • Gur RC; Department of Radiology.
  • Gur RE; Department of Psychiatry, Perelman School of Medicine.
  • Moberg PJ; Department of Radiology.
  • Roalf DR; Department of Psychiatry, Perelman School of Medicine.
  • Ruparel K; Department of Radiology.
  • Turetsky BI; Department of Psychiatry, Perelman School of Medicine.
  • Vandekar SN; Department of Psychiatry, Perelman School of Medicine.
  • Wolf DH; Department of Psychiatry, Perelman School of Medicine.
  • Shinohara RT; Department of Psychiatry, Perelman School of Medicine.
  • Satterthwaite TD; Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37235.
J Neurosci ; 40(9): 1810-1818, 2020 02 26.
Article em En | MEDLINE | ID: mdl-31988059
ABSTRACT
Brain iron is vital to multiple aspects of brain function, including oxidative metabolism, myelination, and neurotransmitter synthesis. Atypical iron concentration in the basal ganglia is associated with neurodegenerative disorders in aging and cognitive deficits. However, the normative development of brain iron concentration in adolescence and its relationship to cognition are less well understood. Here, we address this gap in a longitudinal sample of 922 humans aged 8-26 years at the first visit (M = 15.1, SD = 3.72; 336 males, 486 females) with up to four multiecho T2* scans each. Using this sample of 1236 imaging sessions, we assessed the longitudinal developmental trajectories of tissue iron in the basal ganglia. We quantified tissue iron concentration using R2* relaxometry within four basal ganglia regions, including the caudate, putamen, nucleus accumbens, and globus pallidus. The longitudinal development of R2* was modeled using generalized additive mixed models (GAMMs) with splines to capture linear and nonlinear developmental processes. We observed significant increases in R2* across all regions, with the greatest and most prolonged increases occurring in the globus pallidus and putamen. Further, we found that the developmental trajectory of R2* in the putamen is significantly related to individual differences in cognitive ability, such that greater cognitive ability is increasingly associated with greater iron concentration through late adolescence and young-adulthood. Together, our results suggest a prolonged period of basal ganglia iron enrichment that extends into the mid-twenties, with diminished iron concentration associated with poorer cognitive ability during late adolescence.SIGNIFICANCE STATEMENT Brain tissue iron is essential to healthy brain function. Atypical basal ganglia tissue iron levels have been linked to impaired cognition in iron deficient children and adults with neurodegenerative disorders. However, the normative developmental trajectory of basal ganglia iron concentration during adolescence and its association with cognition are less well understood. In the largest study of tissue iron development yet reported, we characterize the developmental trajectory of tissue iron concentration across the basal ganglia during adolescence and provide evidence that diminished iron content is associated with poorer cognitive performance even in healthy youth. These results highlight the transition from adolescence to adulthood as a period of dynamic maturation of tissue iron concentration in the basal ganglia.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Química Encefálica / Cognição / Ferro Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Química Encefálica / Cognição / Ferro Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article