Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics.
Eur Radiol
; 30(5): 2912-2921, 2020 May.
Article
em En
| MEDLINE
| ID: mdl-32002635
OBJECTIVE: To investigate externally validated magnetic resonance (MR)-based and computed tomography (CT)-based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: Patients with pathologically proven ccRCC in 2009-2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. RESULTS: Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. CONCLUSIONS: MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT-based classifiers are potentially superior to those based on single-sequence or single-phase imaging. KEY POINTS: ⢠Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. ⢠ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Imageamento por Ressonância Magnética
/
Interpretação de Imagem Assistida por Computador
/
Carcinoma de Células Renais
/
Tomografia Computadorizada por Raios X
/
Neoplasias Renais
Tipo de estudo:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article