Your browser doesn't support javascript.
loading
Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics.
Cui, Enming; Li, Zhuoyong; Ma, Changyi; Li, Qing; Lei, Yi; Lan, Yong; Yu, Juan; Zhou, Zhipeng; Li, Ronggang; Long, Wansheng; Lin, Fan.
Afiliação
  • Cui E; Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Li Z; Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Ma C; Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Li Q; Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Lei Y; Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 SunGangXi Road, Shenzhen, 518035, China.
  • Lan Y; Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Yu J; Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 SunGangXi Road, Shenzhen, 518035, China.
  • Zhou Z; Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Li R; Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China.
  • Long W; Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of SUN YAT-SEN University, 23 Beijie Haibang Street, Jiangmen, 529030, China. jmlws2@163.com.
  • Lin F; Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 SunGangXi Road, Shenzhen, 518035, China. foxetfoxet@gmail.com.
Eur Radiol ; 30(5): 2912-2921, 2020 May.
Article em En | MEDLINE | ID: mdl-32002635
OBJECTIVE: To investigate externally validated magnetic resonance (MR)-based and computed tomography (CT)-based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: Patients with pathologically proven ccRCC in 2009-2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. RESULTS: Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. CONCLUSIONS: MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT-based classifiers are potentially superior to those based on single-sequence or single-phase imaging. KEY POINTS: • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Carcinoma de Células Renais / Tomografia Computadorizada por Raios X / Neoplasias Renais Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Carcinoma de Células Renais / Tomografia Computadorizada por Raios X / Neoplasias Renais Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article