Your browser doesn't support javascript.
loading
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
Cortés-Ciriano, Isidro; Lee, Jake June-Koo; Xi, Ruibin; Jain, Dhawal; Jung, Youngsook L; Yang, Lixing; Gordenin, Dmitry; Klimczak, Leszek J; Zhang, Cheng-Zhong; Pellman, David S; Park, Peter J.
Afiliação
  • Cortés-Ciriano I; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Lee JJ; Ludwig Center at Harvard, Boston, MA, USA.
  • Xi R; Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Jain D; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
  • Jung YL; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Yang L; Ludwig Center at Harvard, Boston, MA, USA.
  • Gordenin D; School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China.
  • Klimczak LJ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Zhang CZ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Pellman DS; Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
  • Park PJ; Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC, USA.
Nat Genet ; 52(3): 331-341, 2020 03.
Article em En | MEDLINE | ID: mdl-32025003
ABSTRACT
Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Humano / Genômica / Cromotripsia / Sequenciamento Completo do Genoma / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Humano / Genômica / Cromotripsia / Sequenciamento Completo do Genoma / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article