Your browser doesn't support javascript.
loading
Strong-field control of H3 + production from methanol dications: Selecting between local and extended formation mechanisms.
Iwamoto, Naoki; Schwartz, Charles J; Jochim, Bethany; Raju P, Kanaka; Feizollah, Peyman; Napierala, J L; Severt, T; Tegegn, S N; Solomon, A; Zhao, S; Lam, Huynh; Wangjam, Tomthin Nganba; Kumarappan, V; Carnes, K D; Ben-Itzhak, I; Wells, E.
Afiliação
  • Iwamoto N; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
  • Schwartz CJ; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
  • Jochim B; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Raju P K; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Feizollah P; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Napierala JL; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
  • Severt T; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Tegegn SN; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
  • Solomon A; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
  • Zhao S; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
  • Lam H; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Wangjam TN; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Kumarappan V; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Carnes KD; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Ben-Itzhak I; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
  • Wells E; Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA.
J Chem Phys ; 152(5): 054302, 2020 Feb 07.
Article em En | MEDLINE | ID: mdl-32035476
ABSTRACT
Using the CD3OH isotopologue of methanol, the ratio of D2H+ to D3 + formation is manipulated by changing the characteristics of the intense femtosecond laser pulse. Detection of D2H+ indicates a formation process involving two hydrogen atoms from the methyl side of the molecule and a proton from the hydroxyl side, while detection of D3 + indicates local formation involving only the methyl group. Both mechanisms are thought to involve a neutral D2 moiety. An adaptive control strategy that employs image-based feedback to guide the learning algorithm results in an enhancement of the D2H+/D3 + ratio by a factor of approximately two. The optimized pulses have secondary structures 110-210 fs after the main pulse and result in photofragments that have different kinetic energy release distributions than those produced from near transform limited pulses. Systematic changes to the linear chirp and higher order dispersion terms of the laser pulse are compared to the results obtained with the optimized pulse shapes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article