Your browser doesn't support javascript.
loading
Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations.
Bugiardini, Enrico; Bottani, Emanuela; Marchet, Silvia; Poole, Olivia V; Beninca, Cristiane; Horga, Alejandro; Woodward, Cathy; Lam, Amanda; Hargreaves, Iain; Chalasani, Annapurna; Valerio, Alessandra; Lamantea, Eleonora; Venner, Kerrie; Holton, Janice L; Zeviani, Massimo; Houlden, Henry; Quinlivan, Rosaline; Lamperti, Costanza; Hanna, Michael G; Pitceathly, Robert D S.
Afiliação
  • Bugiardini E; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Bottani E; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Marchet S; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Poole OV; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Beninca C; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Horga A; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Woodward C; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Lam A; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Hargreaves I; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Chalasani A; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Valerio A; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Lamantea E; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Venner K; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Holton JL; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Zeviani M; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Houlden H; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Quinlivan R; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Lamperti C; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Hanna MG; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
  • Pitceathly RDS; Department of Neuromuscular Diseases (E. Bugiardini, O.V.P, A.H., H.H., R.Q., M.G.H., R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Mitochondrial Medicine Group (E. Bottani, C.B., M.Z.), Medical Research Council M
Neurol Genet ; 6(1): e381, 2020 Feb.
Article em En | MEDLINE | ID: mdl-32042910
ABSTRACT

OBJECTIVE:

To describe the clinical and functional consequences of 1 novel and 1 previously reported truncating MT-ATP6 mutation.

METHODS:

Three unrelated probands with mitochondrial encephalomyopathy harboring truncating MT-ATP6 mutations are reported. Transmitochondrial cybrid cell studies were used to confirm pathogenicity of 1 novel variant, and the effects of all 3 mutations on ATPase 6 and complex V structure and function were investigated.

RESULTS:

Patient 1 presented with adult-onset cerebellar ataxia, chronic kidney disease, and diabetes, whereas patient 2 had myoclonic epilepsy and cerebellar ataxia; both harbored the novel m.8782G>A; p.(Gly86*) mutation. Patient 3 exhibited cognitive decline, with posterior white matter abnormalities on brain MRI, and severely impaired renal function requiring transplantation. The m.8618dup; p.(Thr33Hisfs*32) mutation, previously associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa, was identified. All 3 probands demonstrated a broad range of heteroplasmy across different tissue types. Blue-native gel electrophoresis of cultured fibroblasts and skeletal muscle tissue confirmed multiple bands, suggestive of impaired complex V assembly. Microscale oxygraphy showed reduced basal respiration and adenosine triphosphate synthesis, while reactive oxygen species generation was increased. Transmitochondrial cybrid cell lines studies confirmed the deleterious effects of the novel m.8782 G>A; p.(Gly86*) mutation.

CONCLUSIONS:

We expand the clinical and molecular spectrum of MT-ATP6-related mitochondrial disorders to include leukodystrophy, renal disease, and myoclonic epilepsy with cerebellar ataxia. Truncating MT-ATP6 mutations may exhibit highly variable mutant levels across different tissue types, an important consideration during genetic counseling.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article