Your browser doesn't support javascript.
loading
Unraveling the hidden complexity of quasideterministic ratchets: Random walks, graphs, and circle maps.
Blanch-Mercader, Carles; Orlandi, Javier G; Casademunt, Jaume.
Afiliação
  • Blanch-Mercader C; Departamento de Física de la Matèria Condensada, University of Barcelona, 08028 Barcelona, Spain.
  • Orlandi JG; Departament of Biochemistry, University of Geneva, 1211 Geneva, Switzerland.
  • Casademunt J; Departamento de Física de la Matèria Condensada, University of Barcelona, 08028 Barcelona, Spain.
Phys Rev E ; 101(1-1): 012203, 2020 Jan.
Article em En | MEDLINE | ID: mdl-32069660
Brownian ratchets are shown to feature a nontrivial vanishing-noise limit where the dynamics is reduced to a stochastic alternation between two deterministic circle maps (quasideterministic ratchets). Motivated by cooperative dynamics of molecular motors, here we solve exactly the problem of two interacting quasideterministic ratchets. We show that the dynamics can be described as a random walk on a graph that is specific to each set of parameters. We compute point by point the exact velocity-force V(f) function as a summation over all paths in the specific graph for each f, revealing a complex structure that features self-similarity and nontrivial continuity properties. From a general perspective, we unveil that the alternation of two simple piecewise linear circle maps unfolds a very rich variety of dynamical complexity, in particular the phenomenon of piecewise chaos, where chaos emerges from the combination of nonchaotic maps. We show convergence of the finite-noise case to our exact solution.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2020 Tipo de documento: Article