Your browser doesn't support javascript.
loading
Realization of Nanolene: A Planar Array of Perfectly Aligned, Air-Suspended Nanowires.
Lee, Jae-Shin; Choi, Kwang-Wook; Yoo, Jae-Young; Jo, Min-Seung; Yoon, Jun-Bo.
Afiliação
  • Lee JS; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Choi KW; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Yoo JY; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Jo MS; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Yoon JB; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Small ; 16(13): e1906845, 2020 Apr.
Article em En | MEDLINE | ID: mdl-32072747
ABSTRACT
Air suspension and alignment are fundamental requirements to make the best use of nanowires' unique properties; however, satisfying both requirements is very challenging due to the mechanical instability of air-suspended nanowires. Here, a perfectly aligned air-suspended nanowire array called "nanolene" is demonstrated, which has a high mechanical stability owing to a C-channel-shaped cross-section of the nanowires. The excellent mechanical stability is provided through geometrical modeling and finite element method simulations. The C-channel cross-section can be realized by top-down fabrication procedures, resulting in reliable demonstrations of the nanolenes with various materials and geometric parameters. The fabrication process provides large-area uniformity; therefore, nanolene can be considered as a 2D planar platform for 1D nanowire arrays. Thanks to the high mechanical stability of the proposed nanolene, perfectly aligned air-suspended nanowire arrays with an unprecedented length of 1 mm (aspect ratio ≈5100) are demonstrated. Since the nanolene can be used in an energy-efficient nanoheater, two energy-stringent sensors, namely, an air-flow sensor and a carbon monoxide gas sensor, are demonstrated. In particular, the gas sensor achieves sub-10 mW operations, which is a requirement for application in mobile phones. The proposed nanolene will pave the way to accelerate nanowire research and industrialization by providing reliable, high-performance nanowire devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article