Your browser doesn't support javascript.
loading
Enhanced mechanical and biological characteristics of PLLA composites through surface grafting of oligolactide on magnesium hydroxide nanoparticles.
Kang, Eun Young; Park, Sung-Bin; Choi, Bogyu; Baek, Seung-Woon; Ko, Kyoung-Won; Rhim, Won-Kyu; Park, Wooram; Kim, Ik-Hwan; Han, Dong Keun.
Afiliação
  • Kang EY; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr and Department of Biological Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
  • Park SB; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr.
  • Choi B; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr.
  • Baek SW; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr and Department of Biomedical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do 16419, Republic of Korea.
  • Ko KW; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr.
  • Rhim WK; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr.
  • Park W; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr.
  • Kim IH; Department of Biological Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
  • Han DK; Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. dkhan@cha.ac.kr.
Biomater Sci ; 8(7): 2018-2030, 2020 Mar 31.
Article em En | MEDLINE | ID: mdl-32080689
ABSTRACT
Poly(l-lactic acid) (PLLA) is a biocompatible and biodegradable polymer that has received much attention as a biomedical material. However, PLLA also produces by-products that acidify the surrounding tissues during in vivo degradation, which induces inflammatory responses. To overcome these problems, magnesium hydroxide nanoparticles (nano-magnesium hydroxide; nMH) were added to the PLLA matrix as a bioactive filler that can suppress inflammatory responses by neutralizing the acidified environment caused by the degradation of PLLA. Despite the advantages of nMH, the strong cohesion of these nanoparticles toward each other makes it difficult to manufacture a polymer matrix containing homogeneous nanoparticles through thermal processing. Here, we prepared two types of surface-modified nMH with oligolactide (ODLLA) utilizing grafting to (GT) and grafting from (GF) strategies to improve the mechanical and biological characteristics of the organic-inorganic hybrid composite. The incorporation of surface-modified nMH not only enhanced mechanical properties, such as Young's modulus, but also improved homogeneity of magnesium hydroxide particles in the PLLA matrix due to the increase in interfacial interaction. Additionally, the PLLA composites with surface-modified nMH exhibited reduced bulk erosion during hydrolytic degradation with lower cytotoxicity and immunogenicity. Hemocompatibility tests on the PLLA composites with nMH showed a higher albumin to fibrinogen ratio (AFR) and a lower influence of platelet activation, when compared with unmodified control samples. Taken all together, the surface-modified nMH could be seen to successfully improve the physical and biological characteristics of polymer composites. We believe this technology has great potential for the development of hybrid nanocomposites for biomedical devices, including cardiovascular implants.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Dioxanos / Hidróxido de Magnésio Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Dioxanos / Hidróxido de Magnésio Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article