Your browser doesn't support javascript.
loading
Controlled dc Monitoring of a Superconducting Qubit.
Kringhøj, A; Larsen, T W; van Heck, B; Sabonis, D; Erlandsson, O; Petkovic, I; Pikulin, D I; Krogstrup, P; Petersson, K D; Marcus, C M.
Afiliação
  • Kringhøj A; Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Larsen TW; Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • van Heck B; Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA.
  • Sabonis D; Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, Netherlands.
  • Erlandsson O; Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Petkovic I; Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Pikulin DI; Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Krogstrup P; Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA.
  • Petersson KD; Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Marcus CM; Microsoft Quantum Materials Lab Copenhagen, Kanalvej 7, 2800 Lyngby, Denmark.
Phys Rev Lett ; 124(5): 056801, 2020 Feb 07.
Article em En | MEDLINE | ID: mdl-32083909
ABSTRACT
Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor. Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the field-effect transistor to the monitoring circuit allows the influence of weak-to-strong dc monitoring of a "live" qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article