Your browser doesn't support javascript.
loading
In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications.
Kocak, Fatma Z; Talari, Abdullah C S; Yar, Muhammad; Rehman, Ihtesham U.
Afiliação
  • Kocak FZ; Engineering Department, Lancaster University, Lancaster LA1 4YW, UK.
  • Talari ACS; Engineering Department, Lancaster University, Lancaster LA1 4YW, UK.
  • Yar M; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Punjab 54000, Pakistan.
  • Rehman IU; Engineering Department, Lancaster University, Lancaster LA1 4YW, UK.
Int J Mol Sci ; 21(5)2020 Feb 27.
Article em En | MEDLINE | ID: mdl-32120998
Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were prepared by sol-gel technique for these homogeneous solutions were neutralised with sodium bicarbonate (NaHCO3) at 4 °C. Solutions (CS/HA/Hep) constituted hydrogels setting at 37 °C which was initiated from surface in 5-10 minutes. Hydrogels were characterised by performing injectability, gelation, rheology, morphology, chemical and biological analyses. Hydrogel solutions facilitated manual dropwise injection from 21 Gauge which is highly used for orthopaedic and dental administrations, and the maximum injection force measured through 19 G needle (17.191 ± 2.296N) was convenient for manual injections. Angiogenesis tests were performed by an ex-ovo chick chorioallantoic membrane (CAM) assay by applying injectable solutions on CAM, which produced in situ hydrogels. Hydrogels induced microvascularity in CAM assay this was confirmed by histology analyses. Hydrogels with lower concentration of Hep showed more efficiency in pro-angiogenic response. Thereof, novel injectable hydrogels inducing angiogenesis (CS/HA/Hep) are potential candidates for bone regeneration and drug delivery applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Heparina / Neovascularização Fisiológica / Hidrogéis / Indutores da Angiogênese Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Heparina / Neovascularização Fisiológica / Hidrogéis / Indutores da Angiogênese Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article