Your browser doesn't support javascript.
loading
Programming Escherichia coli to function as a digital display.
Shin, Jonghyeon; Zhang, Shuyi; Der, Bryan S; Nielsen, Alec Ak; Voigt, Christopher A.
Afiliação
  • Shin J; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Zhang S; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Der BS; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Nielsen AA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Voigt CA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Mol Syst Biol ; 16(3): e9401, 2020 03.
Article em En | MEDLINE | ID: mdl-32141239
Synthetic genetic circuits offer the potential to wield computational control over biology, but their complexity is limited by the accuracy of mathematical models. Here, we present advances that enable the complete encoding of an electronic chip in the DNA carried by Escherichia coli (E. coli). The chip is a binary-coded digit (BCD) to 7-segment decoder, associated with clocks and calculators, to turn on segments to visualize 0-9. Design automation is used to build seven strains, each of which contains a circuit with up to 12 repressors and two activators (totaling 63 regulators and 76,000 bp DNA). The inputs to each circuit represent the digit to be displayed (encoded in binary by four molecules), and output is the segment state, reported as fluorescence. Implementation requires an advanced gate model that captures dynamics, promoter interference, and a measure of total power usage (RNAP flux). This project is an exemplar of design automation pushing engineering beyond that achievable "by hand", essential for realizing the potential of biology.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Sinais Assistido por Computador / Escherichia coli / Biologia Sintética Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Sinais Assistido por Computador / Escherichia coli / Biologia Sintética Idioma: En Ano de publicação: 2020 Tipo de documento: Article