Your browser doesn't support javascript.
loading
Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth's earliest ecosystems.
Hickman-Lewis, Keyron; Cavalazzi, Barbara; Sorieul, Stéphanie; Gautret, Pascale; Foucher, Frédéric; Whitehouse, Martin J; Jeon, Heejin; Georgelin, Thomas; Cockell, Charles S; Westall, Frances.
Afiliação
  • Hickman-Lewis K; CNRS Centre de Biophysique Moléculaire UPR 4301, Rue Charles Sadron, CS80054, 45071, Orléans, France. keyron.hickman-lewis@cnrs-orleans.fr.
  • Cavalazzi B; Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Zamboni 67, I-40126, Bologna, Italy. keyron.hickman-lewis@cnrs-orleans.fr.
  • Sorieul S; Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Zamboni 67, I-40126, Bologna, Italy.
  • Gautret P; Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa.
  • Foucher F; University of Bordeaux, CNRS, IN2P3, CENBG, 19 Chemin du Solarium, 33175, Gradignan, France.
  • Whitehouse MJ; Université d'Orléans, ISTO, UMR 7327, 45071, Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060, Orléans, France.
  • Jeon H; CNRS Centre de Biophysique Moléculaire UPR 4301, Rue Charles Sadron, CS80054, 45071, Orléans, France.
  • Georgelin T; Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden.
  • Cockell CS; Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden.
  • Westall F; CNRS Centre de Biophysique Moléculaire UPR 4301, Rue Charles Sadron, CS80054, 45071, Orléans, France.
Sci Rep ; 10(1): 4965, 2020 03 18.
Article em En | MEDLINE | ID: mdl-32188894
ABSTRACT
Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth's evolving physicochemical conditions; the resulting metallic biological complement is termed the metallome. Herein, we detail a protocol for describing metallomes in deep time, with applications to the earliest fossil record. Our approach extends the metallome record by more than 3 Ga and provides a novel, non-destructive method of estimating biogenicity in the absence of cellular preservation. Using microbeam particle-induced X-ray emission (µPIXE), we spatially quantify transition metals and metalloids within organic material from 3.33 billion-year-old cherts of the Barberton greenstone belt, and demonstrate that elements key to anaerobic prokaryotic molecular nanomachines, including Fe, V, Ni, As and Co, are enriched within carbonaceous material. Moreover, Mo and Zn, likely incorporated into enzymes only after the Great Oxygenation Event, are either absent or present at concentrations below the limit of detection of µPIXE, suggesting minor biological utilisation in this environmental setting. Scanning and transmission electron microscopy demonstrates that metal enrichments do not arise from accumulation in nanomineral phases and thus unambiguously reflect the primary composition of the carbonaceous material. This carbonaceous material also has δ13C between -41.3‰ and 0.03‰, dominantly -21.0‰ to -11.5‰, consistent with biological fractionation and mostly within a restricted range inconsistent with abiotic processes. Considering spatially quantified trace metal enrichments and negative δ13C fractionations together, we propose that, although lacking cellular preservation, this organic material has biological origins and, moreover, that its precursor metabolism may be estimated from the fossilised "palaeo-metallome". Enriched Fe, V, Ni and Co, together with petrographic context, suggests that this kerogen reflects the remnants of a lithotrophic or organotrophic consortium cycling methane or nitrogen. Palaeo-metallome compositions could be used to deduce the metabolic networks of Earth's earliest ecosystems and, potentially, as a biosignature for evaluating the origin of preserved organic materials found on Mars.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article