Your browser doesn't support javascript.
loading
Magnetic Enhancement for Hydrogen Evolution Reaction on Ferromagnetic MoS2 Catalyst.
Zhou, Wenda; Chen, Mingyue; Guo, Manman; Hong, Aijun; Yu, Ting; Luo, Xingfang; Yuan, Cailei; Lei, Wen; Wang, Shouguo.
Afiliação
  • Zhou W; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Chen M; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
  • Guo M; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Hong A; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Yu T; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Luo X; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Yuan C; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Lei W; Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
  • Wang S; School of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
Nano Lett ; 20(4): 2923-2930, 2020 Apr 08.
Article em En | MEDLINE | ID: mdl-32203664
ABSTRACT
Numerous efforts in improving the hydrogen evolution reaction (HER) performance of transition metal dichalcogenides mostly focus on active sites exposing, vacancy engineering, and phase engineering. However, little room is left for improvement in these approaches. It should be noted that efficient electron transfer also plays a crucial role in catalytic activity. In this work, by employment of an external vertical magnetic field, ferromagnetic bowl-like MoS2 flakes can afford electrons transmitting easily from a glassy carbon electrode to active sites to drive HER, and thus perform magnetic HER enhancement. The ferromagnetic bowl-like MoS2 flakes with an external vertical magnetic field can provide a roughly doubled current density compared to that without an external vertical magnetic field at a constant overpotential of -150 mV. Our work may provide a new pathway to break the bottleneck for further improvement of HER performance and also paves the way to utilize the magnetic enhancement in widely catalytic application.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article