Your browser doesn't support javascript.
loading
Self-Propulsion of Active Colloids via Ion Release: Theory and Experiments.
De Corato, Marco; Arqué, Xavier; Patiño, Tania; Arroyo, Marino; Sánchez, Samuel; Pagonabarraga, Ignacio.
Afiliação
  • De Corato M; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain.
  • Arqué X; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain.
  • Patiño T; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain.
  • Arroyo M; Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
  • Sánchez S; LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain; and Centre Internacional de Mètodes Numèrics en Enginyeria (CIM
  • Pagonabarraga I; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
Phys Rev Lett ; 124(10): 108001, 2020 Mar 13.
Article em En | MEDLINE | ID: mdl-32216443
We study the self-propulsion of a charged colloidal particle that releases ionic species using theory and experiments. We relax the assumptions of thin Debye length and weak nonequilibrium effects assumed in classical phoretic models. This leads to a number of unexpected features that cannot be rationalized considering the classic phoretic framework: an active particle can reverse the direction of motion by increasing the rate of ion release and can propel even with zero surface charge. Our theory predicts that there are optimal conditions for self-propulsion and a novel regime in which the velocity is insensitive to the background electrolyte concentration. The theoretical results quantitatively capture the salt-dependent velocity measured in our experiments using active colloids that propel by decomposing urea via a surface enzymatic reaction.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article