Your browser doesn't support javascript.
loading
Temperature-phased anaerobic co-digestion of food waste and paper waste with and without recirculation: Biogas production and microbial structure.
Li, Lu; Kong, Zhe; Qin, Yu; Wu, Jing; Zhu, Aijun; Xiao, Benyi; Ni, Jialing; Kubota, Kengo; Li, Yu-You.
Afiliação
  • Li L; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Kong Z; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Qin Y; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Wu J; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Zhu A; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Xiao B; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
  • Ni J; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Kubota K; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
  • Li YY; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan. Electronic address: gyokuyu.ri.a5@tohoku.ac.jp.
Sci Total Environ ; 724: 138168, 2020 Jul 01.
Article em En | MEDLINE | ID: mdl-32247142
ABSTRACT
Two temperature-phased anaerobic digestion (TPAD) systems (55 °C in the first reactor and 35 °C in the second reactor) with and without recirculation were operated in parallel for the co-digestion of food waste and paper waste. A long-term experiment was carried out for these two systems with the paper waste ratios elevated from 0 to 50%. The removal efficiencies of COD, TS, VS, carbohydrate and protein in the recirculated TPAD system were higher than those of the non-recirculated system. The successful acclimation of thermophilic cellulose-degrading bacteria in the first reactor (RT1), partly due to recirculation, ensured the effective degradation of cellulose when the paper waste ratio was higher than 40%, resulting in the production of large amounts of hydrogen in reactor RT1. In the absence of recirculation, the main substance produced in the first reactor of the non-recirculated system (T1) was lactic acid. This gradually led to over-acidification and a low degradation efficiency and no methane or hydrogen was produced in T1. Recirculation helped to establish a stable bacterial community capable of producing bio-hydrogen in reactor RT1. The relatively low pH of 5.5 in the RT1 inhibited the activity of hydrogenotrophic archaea without consuming hydrogen, facilitating high hydrogen production levels.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos / Biocombustíveis Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos / Biocombustíveis Idioma: En Ano de publicação: 2020 Tipo de documento: Article