Your browser doesn't support javascript.
loading
Synergistic Tribo-Activity of Nanohybrids of Zirconia/Cerium-Doped Zirconia Nanoparticles with Nano Lamellar Reduced Graphene Oxide and Molybdenum Disulfide.
Verma, Dinesh Kumar; Shukla, Nivedita; Kumar, Bharat; Singh, Alok Kumar; Shahu, Kavita; Yadav, Mithilesh; Rhee, Kyong Yop; Rastogi, Rashmi Bala.
Afiliação
  • Verma DK; Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
  • Shukla N; Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study & Research, V.B.S. Purvanchal University, Jaunpur 222003, India.
  • Kumar B; Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
  • Singh AK; Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
  • Shahu K; Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
  • Yadav M; Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
  • Rhee KY; Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study & Research, V.B.S. Purvanchal University, Jaunpur 222003, India.
  • Rastogi RB; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 446-701, Korea.
Nanomaterials (Basel) ; 10(4)2020 Apr 08.
Article em En | MEDLINE | ID: mdl-32276478
Zirconia and 10%, 20%, and 30% cerium-doped zirconia nanoparticles (ZCO), ZCO-1, ZCO-2, and ZCO-3, respectively, were prepared using auto-combustion method. Binary nanohybrids, ZrO2@rGO and ZCO-2@rGO (rGO = reduced graphene oxide), and ternary nanohybrids, ZrO2@rGO@MoS2 and ZCO-2@rGO@MoS2, have been prepared with an anticipation of a fruitful synergic effect of rGO, MoS2, and cerium-doped zirconia on the tribo-activity. Tribo-activity of these additives in paraffin oil (PO) has been assessed by a four-ball lubricant tester at the optimized concentration, 0.125% w/v. The tribo-performance follows the order: ZCO-2@rGO@MoS2 > ZrO2@rGO@MoS2 > ZCO-2@rGO > ZrO2@rGO > MoS2 > ZrO2 > rGO > PO. The nanoparticles acting as spacers control restacking of the nanosheets provided structural augmentation while nanosheets, in turn, prevent agglomeration of the nanoparticles. Doped nanoparticles upgraded the activity by forming defects. Thus, the results acknowledge the synergic effect of cerium-doped zirconia and lamellar nanosheets of rGO and MoS2. There is noncovalent interaction among all the individuals. Analysis of the morphological features of wear-track carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in PO and its formulations with various additives is consistent with the above sequence. The energy dispersive X-ray (EDX) spectrum of ZCO-2@rGO@MoS2 indicates the existence of zirconium, cerium, molybdenum, and sulfur on the wear-track, confirming, thereby, the active role played by these elements during tribofilm formation. The X-ray photoelectron spectroscopy (XPS) studies of worn surface reveal that the tribofilm is made up of rGO, zirconia, ceria, and MoS2 along with Fe2O3, MoO3, and SO42- as the outcome of the tribo-chemical reaction.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article