Your browser doesn't support javascript.
loading
RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation.
Guillén-Boixet, Jordina; Kopach, Andrii; Holehouse, Alex S; Wittmann, Sina; Jahnel, Marcus; Schlüßler, Raimund; Kim, Kyoohyun; Trussina, Irmela R E A; Wang, Jie; Mateju, Daniel; Poser, Ina; Maharana, Shovamayee; Ruer-Gruß, Martine; Richter, Doris; Zhang, Xiaojie; Chang, Young-Tae; Guck, Jochen; Honigmann, Alf; Mahamid, Julia; Hyman, Anthony A; Pappu, Rohit V; Alberti, Simon; Franzmann, Titus M.
Afiliação
  • Guillén-Boixet J; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Kopach A; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Holehouse AS; Department of Biomedical Engineering and Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
  • Wittmann S; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Jahnel M; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Schlüßler R; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Kim K; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Trussina IREA; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Wang J; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Mateju D; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Poser I; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Maharana S; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Ruer-Gruß M; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Richter D; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Zhang X; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Chang YT; Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea; Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
  • Guck J; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
  • Honigmann A; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Mahamid J; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Hyman AA; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Pappu RV; Department of Biomedical Engineering and Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Alberti S; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Electronic address: simon.alberti@tu-dresden.de.
  • Franzmann TM; Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Article em En | MEDLINE | ID: mdl-32302572
ABSTRACT
Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ribonucleoproteínas / DNA Helicases / RNA Helicases / Grânulos Citoplasmáticos / Proteínas com Motivo de Reconhecimento de RNA / Proteínas de Ligação a Poli-ADP-Ribose Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ribonucleoproteínas / DNA Helicases / RNA Helicases / Grânulos Citoplasmáticos / Proteínas com Motivo de Reconhecimento de RNA / Proteínas de Ligação a Poli-ADP-Ribose Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article