Your browser doesn't support javascript.
loading
HDAC6-dependent ciliophagy is involved in ciliary loss and cholangiocarcinoma growth in human cells and murine models.
Peixoto, Estanislao; Jin, Sujeong; Thelen, Kristen; Biswas, Aalekhya; Richard, Seth; Morleo, Manuela; Mansini, Adrian; Holtorf, Stephanie; Carbone, Fabrizia; Pastore, Nunzia; Ballabio, Andrea; Franco, Brunella; Gradilone, Sergio A.
Afiliação
  • Peixoto E; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Jin S; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
  • Thelen K; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Biswas A; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Richard S; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Morleo M; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Mansini A; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
  • Holtorf S; Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Naples, Italy.
  • Carbone F; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Pastore N; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
  • Ballabio A; The Hormel Institute, University of Minnesota, Austin, Minnesota.
  • Franco B; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
  • Gradilone SA; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1022-G1033, 2020 06 01.
Article em En | MEDLINE | ID: mdl-32338033
Reduced ciliary expression is reported in several tumors, including cholangiocarcinoma (CCA). We previously showed primary cilia have tumor suppressor characteristics, and HDAC6 is involved in ciliary loss. However, mechanisms of ciliary disassembly are unknown. Herein, we tested the hypothesis that HDAC6-dependent autophagy of primary cilia, i.e., ciliophagy, is the main mechanism driving ciliary disassembly in CCA. Using the cancer genome atlas database, human CCA cells, and a rat orthotopic CCA model, we assessed basal and HDAC6-regulated autophagy levels. The effects of RNA-silencing or pharmacological manipulations of ciliophagy on ciliary expression were assessed. Interactions of ciliary proteins with autophagy machinery was assessed by immunoprecipitations. Cell proliferation was assessed by MTS and IncuCyte. A CCA rat model was used to assess the effects of pharmacological inhibition of ciliophagy in vivo. Autophagy is increased in human CCA, as well as in a rat orthotopic CCA model and human CCA cell lines. Autophagic flux was decreased via inhibition of HDAC6, while it was increased by its overexpression. Inhibition of autophagy and HDAC6 restores cilia and decreases cell proliferation. LC3 interacts with HDAC6 and ciliary proteins, and the autophagy cargo receptor involved in targeting ciliary components to the autophagy machinery is primarily NBR1. Treatment with chloroquine, Ricolinostat (ACY-1215), or their combination decreased tumor growth in vivo. Mice that overexpress the autophagy transcription factor TFEB show a decrease of ciliary number. These results suggest that ciliary disassembly is mediated by HDAC6-regulated autophagy, i.e., ciliophagy. Inhibition of ciliophagy may decrease cholangiocarcinoma growth and warrant further investigations as a potential therapeutic approach.NEW & NOTEWORTHY This work identifies novel targets against primary ciliary disassembly that can lead to new cholangiocarcinoma therapeutic strategies. Furthermore, ciliary loss has been described in different tumors, increasing the significance of our research.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cílios / Colangiocarcinoma / Desacetilase 6 de Histona Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cílios / Colangiocarcinoma / Desacetilase 6 de Histona Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article