Your browser doesn't support javascript.
loading
Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae.
Kim, Ji Won; Park, Su-Bin; Tran, Quynh-Giao; Cho, Dae-Hyun; Choi, Dong-Yun; Lee, Yong Jae; Kim, Hee-Sik.
Afiliação
  • Kim JW; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
  • Park SB; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea.
  • Tran QG; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
  • Cho DH; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea.
  • Choi DY; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
  • Lee YJ; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea.
  • Kim HS; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
Microb Cell Fact ; 19(1): 97, 2020 Apr 28.
Article em En | MEDLINE | ID: mdl-32345276
ABSTRACT

BACKGROUND:

For decades, plastic has been a valuable global product due to its convenience and low price. For example, polyethylene terephthalate (PET) was one of the most popular materials for disposable bottles due to its beneficial properties, namely impact resistance, high clarity, and light weight. Increasing demand of plastic resulted in indiscriminate disposal by consumers, causing severe accumulation of plastic wastes. Because of this, scientists have made great efforts to find a way to biologically treat plastic wastes. As a result, a novel plastic degradation enzyme, PETase, which can hydrolyze PET, was discovered in Ideonella sakaiensis 201-F6 in 2016.

RESULTS:

A green algae, Chlamydomonas reinhardtii, which produces PETase, was developed for this study. Two representative strains (C. reinhardtii CC-124 and CC-503) were examined, and we found that CC-124 could express PETase well. To verify the catalytic activity of PETase produced by C. reinhardtii, cell lysate of the transformant and PET samples were co-incubated at 30 °C for up to 4 weeks. After incubation, terephthalic acid (TPA), i.e. the fully-degraded form of PET, was detected by high performance liquid chromatography analysis. Additionally, morphological changes, such as holes and dents on the surface of PET film, were observed using scanning electron microscopy.

CONCLUSIONS:

A PET hydrolyzing enzyme, PETase, was successfully expressed in C. reinhardtii, and its catalytic activity was demonstrated. To the best of our knowledge, this is the first case of PETase expression in green algae.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenotereftalatos / Microalgas / Hidrolases Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenotereftalatos / Microalgas / Hidrolases Idioma: En Ano de publicação: 2020 Tipo de documento: Article