Your browser doesn't support javascript.
loading
Revival of Ancient Marine Dinoflagellates Using Molecular Biostimulation.
Delebecq, Gaspard; Schmidt, Sabine; Ehrhold, Axel; Latimier, Marie; Siano, Raffaele.
Afiliação
  • Delebecq G; Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, F-29280, France.
  • Schmidt S; UMR5805 EPOC, University of Bordeaux, Pessac, 33605, France.
  • Ehrhold A; Ifremer, GM, Plouzané, F-29280, France.
  • Latimier M; Ifremer, DYNECO, Plouzané, F-29280, France.
  • Siano R; Ifremer, DYNECO, Plouzané, F-29280, France.
J Phycol ; 56(4): 1077-1089, 2020 08.
Article em En | MEDLINE | ID: mdl-32348555
ABSTRACT
The biological processes involved in the preservation, viability, and revival of long-term dormant dinoflagellate cysts buried in sediments remain unknown. Based on studies of plant seed physiology, we tested whether the revival of ancient cysts preserved in century-old sediments from the Bay of Brest (France) could be stimulated by melatonin and gibberellic acid, two molecules commonly used in seed priming. Dinoflagellates were revived from sediments dated to approximately 150 years ago (156 ± 27, 32 cm depth), extending the known record age of cyst viability previously established as around one century. A culture suspension of sediments mixed with melatonin and gibberellic acid solutions as biostimulants exhibited germination of 11 dinoflagellate taxa that could not be revived under controlled culture conditions. The biostimulants revived some dinoflagellates from century-old sediments, including the potentially toxic species Alexandrium minutum. The biostimulants showed positive effects on germination on even more ancient cysts, showing dose-dependent effects on the germination of Scrippsiella acuminata. Concentrations of 1, 10, and 100 µM melatonin and gibberellic acid promoted germination. In contrast, 1,000 µM solutions, particularly for melatonin, drastically decreased germination, suggesting a potential noxious effect of high doses of these molecules on dinoflagellate revival. Our findings suggest that melatonin and gibberellic acid are involved in the stimulation of germination of dinoflagellate cysts. These biostimulants can be used to germinate long-term stored dinoflagellate cysts, which may promote studies of ancient strains in the resurrection ecology research field.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dinoflagellida País/Região como assunto: Europa Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dinoflagellida País/Região como assunto: Europa Idioma: En Ano de publicação: 2020 Tipo de documento: Article