Your browser doesn't support javascript.
loading
Machine learning, the kidney, and genotype-phenotype analysis.
Sealfon, Rachel S G; Mariani, Laura H; Kretzler, Matthias; Troyanskaya, Olga G.
Afiliação
  • Sealfon RSG; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA.
  • Mariani LH; Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA.
  • Kretzler M; Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA. Electronic address: kretzler@umich.edu.
  • Troyanskaya OG; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Department of Computer Science, Princeton University, Princeton, New Jersey, USA. Electronic address: o
Kidney Int ; 97(6): 1141-1149, 2020 06.
Article em En | MEDLINE | ID: mdl-32359808
With biomedical research transitioning into data-rich science, machine learning provides a powerful toolkit for extracting knowledge from large-scale biological data sets. The increasing availability of comprehensive kidney omics compendia (transcriptomics, proteomics, metabolomics, and genome sequencing), as well as other data modalities such as electronic health records, digital nephropathology repositories, and radiology renal images, makes machine learning approaches increasingly essential for analyzing human kidney data sets. Here, we discuss how machine learning approaches can be applied to the study of kidney disease, with a particular focus on how they can be used for understanding the relationship between genotype and phenotype.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Aprendizado de Máquina Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Aprendizado de Máquina Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article