Your browser doesn't support javascript.
loading
Acquired resistance to DZNep-mediated apoptosis is associated with copy number gains of AHCY in a B-cell lymphoma model.
Akpa, Chidimma Agatha; Kleo, Karsten; Oker, Elisabeth; Tomaszewski, Nancy; Messerschmidt, Clemens; López, Cristina; Wagener, Rabea; Oehl-Huber, Kathrin; Dettmer, Katja; Schoeler, Anne; Lenze, Dido; Oefner, Peter J; Beule, Dieter; Siebert, Reiner; Capper, David; Dimitrova, Lora; Hummel, Michael.
Afiliação
  • Akpa CA; Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany. chidimma.akpa@charite.de.
  • Kleo K; Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany. chidimma.akpa@charite.de.
  • Oker E; Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
  • Tomaszewski N; Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
  • Messerschmidt C; Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
  • López C; Berlin Institute of Health, Charité Core Unit Bioinformatics, Berlin, Germany.
  • Wagener R; Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
  • Oehl-Huber K; Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
  • Dettmer K; Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
  • Schoeler A; Institute of Functional Genomics, University of Regensburg, Regensburg, Germany.
  • Lenze D; Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Oefner PJ; German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Beule D; Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
  • Siebert R; Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany.
  • Capper D; Berlin Institute of Health, Charité Core Unit Bioinformatics, Berlin, Germany.
  • Dimitrova L; Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
  • Hummel M; Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany.
BMC Cancer ; 20(1): 427, 2020 May 14.
Article em En | MEDLINE | ID: mdl-32408898
ABSTRACT

BACKGROUND:

Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application.

METHODS:

To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis.

RESULTS:

Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium.

CONCLUSIONS:

This study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenosina / Linfoma de Células B / Apoptose / Resistencia a Medicamentos Antineoplásicos / Adenosil-Homocisteinase / Variações do Número de Cópias de DNA / Proteína Potenciadora do Homólogo 2 de Zeste Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenosina / Linfoma de Células B / Apoptose / Resistencia a Medicamentos Antineoplásicos / Adenosil-Homocisteinase / Variações do Número de Cópias de DNA / Proteína Potenciadora do Homólogo 2 de Zeste Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article