Your browser doesn't support javascript.
loading
Exploration of small RNA biomarkers for testicular injury in the serum exosomes of rats.
Kawata, Reo; Kagawa, Takumi; Koya, Yoshihiro; Kajiyama, Hiroaki; Oda, Shingo; Yokoi, Tsuyoshi.
Afiliação
  • Kawata R; Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Investigative Toxicology, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd.,
  • Kagawa T; Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
  • Koya Y; Bell Research Center Obstetrics and Gynecology, Academic Research & Industrial-Academia Collaboration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
  • Kajiyama H; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
  • Oda S; Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
  • Yokoi T; Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan. Electronic address: tyokoi@med.nagoya-u.ac.jp.
Toxicology ; 440: 152490, 2020 07.
Article em En | MEDLINE | ID: mdl-32418910
ABSTRACT
Testicular injury is often observed in drug development. Serum hormones are usually used as noninvasive biomarkers for testicular injury; however, their sensitivities are low. Therefore, it is difficult to monitor testicular injury in drug development. In recent years, molecules in body fluid exosomes have attracted attention as biomarkers for diseases. In this study, small RNAs in serum exosomes were analyzed to identify noninvasive biomarkers of testicular injury in rats, which are often used in preclinical drug development. The rat models of testicular injury were prepared by a single oral administration of 2000 mg/kg ethylene glycol monomethyl ether, in which spermatocyte degeneration and Sertoli cell vacuolation were observed, or 400 mg/kg carbendazim, in which Sertoli cell vacuolation and seminiferous tubule dilation were observed. Serum exosomal small RNA-seq analysis of these models was performed. The analysis identified 3 small RNAs that fluctuated in common between the models, and miR-423-5p and miR-128-3p were selected as candidate markers. For evaluating these candidate markers in other testicular injury models, the models were prepared by a single oral administration of 60 mg/kg 1,3-dinitrobenzene or 500 mg/kg nitrofurazone, and spermatocyte degeneration and Sertoli cell vacuolation were observed. In qPCR analysis, these exosomal miRNAs were upregulated in all models except for the 1,3-dinitrobenzene model, in which severe hemolysis was observed. By contrast, these miRNAs in whole serum extracts did not significantly change in any of the models. In conclusion, we identified miR-423-5p and miR-128-3p in serum exosomes as noninvasive biomarkers for testicular injury in rats.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Testiculares / Biomarcadores / RNA Citoplasmático Pequeno / Exossomos Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Testiculares / Biomarcadores / RNA Citoplasmático Pequeno / Exossomos Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article