Your browser doesn't support javascript.
loading
Accurate deep neural network inference using computational phase-change memory.
Joshi, Vinay; Le Gallo, Manuel; Haefeli, Simon; Boybat, Irem; Nandakumar, S R; Piveteau, Christophe; Dazzi, Martino; Rajendran, Bipin; Sebastian, Abu; Eleftheriou, Evangelos.
Afiliação
  • Joshi V; IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  • Le Gallo M; King's College London, Strand, London, WC2R 2LS, UK.
  • Haefeli S; IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland. anu@zurich.ibm.com.
  • Boybat I; IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  • Nandakumar SR; ETH Zurich, Rämistrasse 101, 8092, Zurich, Switzerland.
  • Piveteau C; IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  • Dazzi M; Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
  • Rajendran B; IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  • Sebastian A; IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  • Eleftheriou E; ETH Zurich, Rämistrasse 101, 8092, Zurich, Switzerland.
Nat Commun ; 11(1): 2473, 2020 05 18.
Article em En | MEDLINE | ID: mdl-32424184
ABSTRACT
In-memory computing using resistive memory devices is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to phase-change memory (PCM) devices. We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on CIFAR-10 and a top-1 accuracy of 71.6% on ImageNet benchmarks after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one-day period, where each of the 361,722 synaptic weights is programmed on just two PCM devices organized in a differential configuration.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article