Your browser doesn't support javascript.
loading
A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation.
Zhao, Kaiqiong; Oualkacha, Karim; Lakhal-Chaieb, Lajmi; Labbe, Aurélie; Klein, Kathleen; Ciampi, Antonio; Hudson, Marie; Colmegna, Inés; Pastinen, Tomi; Zhang, Tieyuan; Daley, Denise; Greenwood, Celia M T.
Afiliação
  • Zhao K; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
  • Oualkacha K; Lady Davis Institute for Medical Research, Montreal, QC, Canada.
  • Lakhal-Chaieb L; Département de Mathématiques, Université du Québec à Montrèal, Montreal, QC, Canada.
  • Labbe A; Département de Mathématiques et de Statistique, Université Laval, Quebec City, QC, Canada.
  • Klein K; Département des Sciences de la Décision, HEC Montrèal, Montreal, QC, Canada.
  • Ciampi A; Lady Davis Institute for Medical Research, Montreal, QC, Canada.
  • Hudson M; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
  • Colmegna I; Lady Davis Institute for Medical Research, Montreal, QC, Canada.
  • Pastinen T; Lady Davis Institute for Medical Research, Montreal, QC, Canada.
  • Zhang T; Department of Medicine, McGill University, Montreal, QC, Canada.
  • Daley D; Department of Medicine, McGill University, Montreal, QC, Canada.
  • Greenwood CMT; The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
Biometrics ; 77(2): 424-438, 2021 06.
Article em En | MEDLINE | ID: mdl-32438470
Identifying disease-associated changes in DNA methylation can help us gain a better understanding of disease etiology. Bisulfite sequencing allows the generation of high-throughput methylation profiles at single-base resolution of DNA. However, optimally modeling and analyzing these sparse and discrete sequencing data is still very challenging due to variable read depth, missing data patterns, long-range correlations, data errors, and confounding from cell type mixtures. We propose a regression-based hierarchical model that allows covariate effects to vary smoothly along genomic positions and we have built a specialized EM algorithm, which explicitly allows for experimental errors and cell type mixtures, to make inference about smooth covariate effects in the model. Simulations show that the proposed method provides accurate estimates of covariate effects and captures the major underlying methylation patterns with excellent power. We also apply our method to analyze data from rheumatoid arthritis patients and controls. The method has been implemented in R package SOMNiBUS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Metilação de DNA / Sequenciamento de Nucleotídeos em Larga Escala Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Metilação de DNA / Sequenciamento de Nucleotídeos em Larga Escala Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article