Your browser doesn't support javascript.
loading
A technique for removing tumourigenic pluripotent stem cells using rBC2LCN lectin.
Haramoto, Yoshikazu; Onuma, Yasuko; Mawaribuchi, Shuuji; Nakajima, Yoshiro; Aiki, Yasuhiko; Higuchi, Kumiko; Shimizu, Madoka; Tateno, Hiroaki; Hirabayashi, Jun; Ito, Yuzuru.
Afiliação
  • Haramoto Y; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
  • Onuma Y; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
  • Mawaribuchi S; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
  • Nakajima Y; Division of Developmental Biology, Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi, Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
  • Aiki Y; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
  • Higuchi K; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
  • Shimizu M; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
  • Tateno H; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
  • Hirabayashi J; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
  • Ito Y; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
Regen Ther ; 14: 306-314, 2020 Jun.
Article em En | MEDLINE | ID: mdl-32462059
ABSTRACT

INTRODUCTION:

Tumourigenesis attributed to residual undifferentiated cells in a graft is considered to be a significant issue in cell therapy using human pluripotent stem cells. To ensure the safety of regenerative medicine derived from pluripotent stem cells, residual undifferentiated cells must be eliminated in the manufacturing process. We previously described the lectin probe rBC2LCN, which binds harmlessly and specifically to the cell surface of human pluripotent stem cells. We report here a technique using rBC2LCN to remove pluripotent cells from a heterogenous population to reduce the chance of teratoma formation.

METHODS:

We demonstrate a method for separating residual tumourigenic cells using rBC2LCN-bound magnetic beads. This technology is a novel use of their previous discovery that rBC2LCN is a lectin that selectively binds to pluripotent cells. We optimize and validate a method to remove hPSCs from a mixture with human fibroblasts using rBC2LCN-conjugated magnetic beads.

RESULTS:

Cells with the potential to form teratoma could be effectively eliminated from a heterogeneous cell population with biotin-labelled rBC2LCN and streptavidin-bound magnetic beads. The efficiency was measured by FACS, ddPCR, and animal transplantation, suggesting that magnetic cell separation using rBC2LCN is quite efficient for eliminating hPSCs from mixed cell populations.

CONCLUSIONS:

The removal of residual tumourigenic cells based on rBC2LCN could be a practical option for laboratory use and industrialisation of regenerative medicine using human pluripotent stem cells.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article